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We study the low-temperature properties of a 4He fluid confined in nanopores, using large-scale

quantumMonte Carlo simulations with realistic He-He and He-pore interactions. In the narrow-pore limit,

the system can be described by the quantum hydrodynamic theory known as Luttinger liquid theory with a

large Luttinger parameter, corresponding to the dominance of solid tendencies and strong susceptibility

to pinning by a periodic or random potential from the pore walls. On the other hand, for wider pores,

the central region appears to behave like a Luttinger liquid with a smaller Luttinger parameter, and may

be protected from pinning by the wall potential, offering the possibility of experimental detection of a

Luttinger liquid.
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While the ability to flow through narrow pores is what
gives a superfluid its name, a strictly one-dimensional (1D)
Galilean invariant system of bosons with short range inter-
actions cannot exist in any true ordered (superfluid or
solid) phase. Instead, it will be in a type of quasiordered
phase known as a Luttinger liquid (LL), featuring correla-
tions that decay as powers of spatial separation, even at
zero temperature (T) [1]. Ongoing experiments on 4He in
nanopores have recently moved towards pore radii in the
nanometer regime, thus offering the exciting possibility
of probing the LL phase. Historically, confinement was
achieved through quasi-1D cavernous networks in porous
glasses [2] and more recently from folded sheets of mes-
oporous materials [3]. A substantially different approach
has been taken by Gervais and collaborators [4], who are
studying the flow of 4He inside nanopores of custom radii
by carving a hole through a Si3N4 membrane using a
transmission electron beam. Although the experiments of
Ref. [4] have thus far focused on flow properties of helium
in the gas phase, it is intriguing to ponder the equilibrium
system of helium atoms inside the pore as the temperature
is reduced below the bulk superfluid transition temperature
T� ’ 2:17 K. If the pore radius is sufficiently small, it
ought to be possible to observe a crossover to strictly 1D
behavior.

Significant progress has been made on the theoretical
understanding of helium confined inside carbon nanotubes
[5–7] or smooth nanopores [8,9]. A complex phase dia-
gram has been predicted, containing states where helium
atoms occupy only the central region of the cylinder (for
narrow tubes) and those consisting of one or more cylin-
drical shells (for wider tubes). A realistic microscopic
description of an assembly of 4He atoms confined inside
a single nanopore can be achieved by making use of the
accepted Aziz [10] pair potential to describe the interaction
between two helium atoms. The pore can be modeled as

a long cylindrical cavity carved inside a continuous me-
dium. The potential energy of interaction of a single he-
lium atom in the pore can be obtained by integrating a
Lennard-Jones pair potential, in the same way as it is done
for smooth planar substrates [11].
In an attempt to investigate theoretically the physical

issues addressed by the planned experiments, in this Letter
we made use of such a model to reproduce as closely as
possible the proposed experimental geometry. An even
more realistic simulation may require including the effects
of a periodic substrate, disorder in the pore walls and flow
conditions, but understanding the equilibrium state with
clean smooth walls is an important first step.
We computed low-temperature thermodynamics of fluid

4He inside nanopores by means of quantum Monte Carlo
(QMC) simulations, based on the continuous-space worm
algorithm. This methodology affords an essentially exact
estimation of many physical observables, for systems of
thousands of quantum particles at low temperature, in the
grand canonical ensemble [12,13]. The possibility of simu-
lating large systems is crucial, as LL behavior can only
be detected on sufficiently long length scales. We chose
Lennard-Jones parameters for the atom-wall potential ap-
propriate for Si3N4 [14], as well as glass [15], and found no
qualitative change in the basic physical results. All results
shown here are for the Si3N4 system.
We considered nanopores of length L up to 128 Å and

radii R between 2.5 and 12.0 Å, using periodic boundary
conditions along the axis. The illustrative results shown

here are all for L ¼ 100 �A; we observed that physical
results are insensitive to the length of the nanopore, pro-
vided that L * 8R. Simulations were carried out in the
grand canonical ensemble, for temperatures in the range
T ¼ 0:5–2:0 K, at a chemical potential � ¼ �7:2 K,
which corresponds to saturated vapor pressure in the 3D
reservoir used in the experiments. In addition to restricting
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T < T� ’ 2:17 K, all temperatures considered are small
with respect to the average kinetic energy per particle,
ensuring we are in a low-energy regime. A typical simula-
tion employs an average number of 4He atoms around
1000. Figure 1 shows the computed density �ðrÞ of 4He
atoms as a function of radial distance r from the tube
center, at T ¼ 0:5 K. Results are shown for pores of differ-
ent radii. The density is uniform along the axis of the
nanopore (z), and also as a function of angle. As expected,
�ðrÞ ! 0 in the vicinity of the wall, and features a large
peak approximately 2.5 Å from its surface, due to the short-
distance repulsion and pronounced minimum near the
surface. One or more peaks in the radial density are ob-
served, corresponding to a possible inner cylindrical region
of high linear density surrounded by cylindrical shells of
atoms separated by a distance set by the attractive well
of the Aziz potential. This phenomenon is very robust
and always occurs for sufficiently large R. As R increases,
more peaks occur, with those near the center of the pore
gradually evolving to a constant density indicating that
dimensional crossover to the 3D limit has occurred. The
presence of an inner cylinder (IC) near the axis of the tube
depends on the precise choice of R, and for the particular
form of the helium-pore potential used here, occurs for
R� 3n where n � 1 is an integer. Cylindrical shells in a
nanopore are the analogue of planar layers in a 4He thin
film [15,16]. They arise from the suppression of quantum
fluctuations near the container wall, where atoms are lo-
calized [15]. As mentioned above, such layering has been
predicted previously in nanopores using variational and
approximate density functional theory [8,9], as well as
QMC simulations at very low helium density [17]. Here,
we observe the formation of up to four such concentric
shells at � ¼ 7:2 K, owing to the relatively large size of
the systems simulated.

An attempt to develop a theoretical understanding of
the low-energy properties of the helium atoms in the pore
can be made through Luttinger liquid theory [1], which, in
strictly 1D, provides a universal description of interacting
fermions or bosons via linear quantum hydrodynamics.

This is accomplished in terms of two bosonic fields, �ðxÞ
and �ðxÞ, representing the density and phase oscillations

of a second quantized particle field operator c yðxÞ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0 þ @x�ðxÞ

p
ei�ðxÞ related to the �-dependent density

of particles at T ¼ 0 in the thermodynamic limit via
�0 ¼ h�ðxÞi ¼ hc yðxÞc ðxÞi. The quadratic Hamiltonian
describing these fields is given by

H ��N ¼ v

2�

Z L

0
dx

�
1

K
ð@x�Þ2 þ Kð@x�Þ2

�
; (1)

where we have set @ ¼ kB ¼ 1 and v and K are related to
the microscopic details of the underlying first principles
many-body Hamiltonian upon which the simulations are
based. The velocity v describes the linear dispersion of
low-energy phonon modes, while the Luttinger parameter
K can be tuned to initiate a T ¼ 0 crossover between a
state with solid order at K ¼ 1 to one with infinite range
superfluid correlations at K ¼ 0. The quadratic nature of
Eq. (1) allows for the calculation of all correlation func-
tions and thermodynamic properties in terms of v and K.
The continuous-space worm algorithm has recently been
successfully employed [18] to test the effectiveness of
Eq. (1) in describing the low-energy quantum dynamics
of a system of interacting bosons in the 1D continuum
with contact interactions. The methodology of Ref. [18] is
used here to study the density-density or pair correlation
function (PCF), which can be derived for a LL to be

h�ðxÞ�ð0Þi ¼ �2
0 þ

1

2�2K

d2

dx2
ln�1ð�x=L; e��v=LTÞ

þA cosð2��0xÞ
�
2�ðiv=LTÞe��v=6LT

�1ð�x=L; e��v=LTÞ
�
2=K

(2)

with �ðizÞ the Dedekind eta function and �1ðy; zÞ the first
elliptical theta function. A is a nonuniversal constant
dependent on the short-distance properties of the system.

As LT=v ! 1, Eq. (2) simplifies to h�ðxÞ�ð0Þi ! �2
0 �

1=ð2�2Kx2Þ þA cosð2��0xÞ=x2=K [1].

For R ¼ 2:9 �A, Fig. 1 shows that helium atoms are
confined to the center of the pore (inner cylinder) with a

radial density that is effectively zero by r ’ 1:25 �A; we
thus expect 1D behavior in this case. The main panel of
Fig. 2 shows the computed axial PCF for temperatures
ranging from 0.5–1.25 K. The results suggest that helium

inside the narrow (R ¼ 2:9 �A) nanopore is in a quasisolid
phase, with slowly decaying correlations only minimally
dependent on temperature. At low temperature, the average
effective 1D density (�0 ¼ N=L) is close to r�1

A where

rA ’ 2:97 �A is the minimum of the helium-helium inter-
action potential. In this 1D limit, we expect the PCF to be
well described by LL theory and can perform a fit of the
QMC data to Eq. (2). The He-pore interaction is indepen-
dent of the axial coordinate, and Galilean invariance
restricts the ratio v=K ¼ ��0=m [1]. The finite size and
temperature scaling behavior of all thermodynamic
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FIG. 1 (color online). QMC data for the radial density of
helium atoms for cylindrical nanopores with radii R ¼ 2:9,
4.0, 10.0, 12.0 Å showing the characteristic shell structure due
to the interaction of bulk atoms with the walls of the channel.
Error bars are smaller than the line thickness.
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quantities is predicted by LL theory. Thus, a single fit of
any quantity, performed for particular values of T and L,
can be used to generate LL predictions throughout the
region of T-L parameter space where the universal hydro-
dynamic theory of Eq. (1) applies. The results of this fitting
procedure are shown as solid lines in the main panel of

Fig. 2; we have determined v2:9 ¼ 70ð3Þ �AK and K2:9 ¼
6:0ð2Þ where the subscript refers to the radius of the pore
and the number in the bracket is the uncertainty in the final
digit. This large Luttinger parameter corresponds to a
strong tendency toward solid formation. The Fig. 2 inset

shows the rapidly decaying PCF at T ¼ 0:5 K for R ¼
4:0 �A. Here, no IC exists, and the helium atoms form a
cylindrical shell [see Fig. 1] with interaction energy min-
imizing helical density correlations at short distances that
serve to wash out possible LL oscillations at longer length

scales. We thus postpone a LL analysis of the R ¼ 4 �A
pore to future studies. In both these narrow pores, atoms
experience a large degree of localization, either along the
axis or near the surface, and quantum-mechanical ex-
changes are strongly suppressed. The situation is markedly

different for the R ¼ 12:0 �A nanopore, as �ðrÞ plotted in
Fig. 1 indicates the presence of an axial IC of helium,
surrounded by three cylindrical shells. Although the den-
sity between the shells is never strictly zero, in order to

make direct comparisons with the R ¼ 2:9 �A nanopore, we
can measure the properties of only those helium atoms
inside the IC defined to include all atoms with a radius
smaller than the location of the first minimum in �ðrÞ. We
find that these IC atoms make the dominant nonback-
ground (oscillatory) contribution to the PCF and the as-
signment of a given indistinguishable helium atom to the
IC is performed dynamically whenever measurements are
made. QMC data for the IC-PCF are shown as symbols in

Fig. 3 for temperatures ranging from 0.5–2.0 K. We ob-
serve persistent oscillations that decay much more rapidly
than in the narrower pore, with an envelope that contracts
as the temperature is reduced. This markedly liquidlike
behavior is consistent with the onset of a finite superfluid
response inside the cylinder. The superfluid fraction can be
determined through the winding of imaginary-time particle
world lines, as they wrap around the system in the axial
direction (with periodic boundary conditions) [19]. Results
for the superfluid density computed in this way for the full

R ¼ 12 �A pore (L ¼ 100 �A) are shown as an inset in Fig. 3

[20]. For comparison, the R ¼ 2:9 �A nanopore of the same
length shows no evidence of superfluidity over the same
temperature range.

We may regard the R ¼ 12 �A nanopore as a coupled
multicomponent LL, with cylindrical shells replacing
the legs of previously studied ladders [21]. Similar to the
conclusion for a two-leg bosonic ladder, we might expect
that only one ‘‘center of mass mode’’ survives as a gapless
degree of freedom in the low-energy effective field theory,
due to tunneling between the shells, manifest here as
multiparticle quantum exchange cycles connecting them.
Under this assumption, we have performed a fit of the
lowest temperature QMC data in Fig. 3 to Eq. (2). When
considering the IC, we no longer have Galilean invariance,
and must independently extract v and K from the data.

We find v12 ¼ 42ð2Þ �AK and K12 ¼ 1:3ð1Þ, which have
been used to plot LL predictions (solid lines) that agree
remarkably well with the QMC data up to T ¼ 2:0 K. We
stress that after the LL parameter and velocity have been
determined for a single temperature, only one fit parameter
A remains to be determined at all other values of T.
The surprising robustness of the LL description of the IC
can be tested further by using the values of v12 and K12
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FIG. 2 (color online). QMC data (symbols) and a fit to Eq. (2)
(lines) for the pair correlation function along the axis of a
nanopore with L ¼ 100 �A. The main panel shows strong oscil-
lations for R ¼ 2:9 �A, while the inset details rapid decay for
R ¼ 4:0 �A (here the line is a guide to the eye). Error bars are
smaller than the symbol size and data in the main panel has been
given a vertical T-dependent shift.
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FIG. 3 (color online). QMC data (symbols) and a fit to Eq. (2)
(lines) for the inner cylinder pair correlation function along the
axis of a nanopore with L ¼ 100 �A and R ¼ 12:0 �A for helium
atoms with r < 1:75 �A. The inset shows the superfluid fraction
for the full nanopore as a function of temperature. Error bars are
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given a vertical T-dependent shift.

PRL 106, 105303 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

11 MARCH 2011

105303-3



determined from the PCF, to generate predictions for other
quantities. We have compared the single-particle density
matrix hc yðxÞc ð0Þi computed in the QMC simulations
with the expected result from LL theory (with no new
fitting parameters) and find acceptable agreement at low T.

It is natural to ask how the form of the confining poten-
tial might affect the low-energy behavior of the nanopore
system. We have performed simulations of helium in the
exact 1D limit (R ¼ 0) with � ¼ �3D � VPð0; 2:9Þ where
VPðr; RÞ is the He-pore interaction for a pore of radius R.

An analysis of the PCF yields values of v0 ¼ 74ð2Þ �AK
and K0 ¼ 6:3ð2Þ which are in relative agreement with

those found for the R ¼ 2:9 �A nanopore. As the radius is
increased, the main consequences of the cylindrical shells
of helium that surround the IC are to screen the interaction
with the wall and drastically alter the shape of the He-He
potential. The latter effect can be quantified by computing
an effective 1D interaction potential V1Dðz; RÞ ¼ 1

�2
1D

�
R
d2�

R
d2� 0VAðj~r� ~r0jÞ�ð�Þ�ð� 0Þ where VA is the Aziz

pair potential, �1D ¼ R
d2��ð�Þ the effective 1D density,

�ð�Þ the radial number density, and ~r ¼ ð�;�; zÞ in cylin-
drical polar coordinates. We find that V1Dðz; 2:9Þ � VAðzÞ,
consistent with our expectation that this nanopore radius
approximates the 1D limit. However V1Dðz; 12:0Þ exhibits
a broad shallow minimum, shifted from rA with a depth
that is 1=2 of that of the unscreened bulk potential VA.
The softening of the effective interaction potential de-
creases the energetic benefits of forming a solid with lattice
spacing near rA and as a result the helium atoms delocalize
into a smaller-K Luttinger liquid with a finite superfluid
density.

The value of K2:9 found here in the 1D limit is 30 times
larger than that found for a screw dislocation of diameter
6.0 Å in solid 4He [13]. While the difference in K values
may be due to the different chemical potential (� ¼ 0:02
corresponding to the bulk melting point) or effects of the
screw dislocation potential (which may vary greatly from
VP), it deserves further study.

The numerical value of the Luttinger parameter K for
pores of varying radius can provide important information
on the sensitivity of the LL to perturbations coming from
disorder or commensuration. In the 1D case, a weak peri-
odic substrate, commensurate with the density is only
irrelevant for K < 2=3 [1] while weak disorder is only
irrelevant for K < 1=2 [22]. We have found a value of
K � 6 at saturated vapor pressure for the narrowest pores,
indicating a strong tendency to form a solid, resulting from
the shape of VAðrÞ. This large value could in principle
be experimentally tested along the lines of Ref. [4] as the
formation of a quasisolid would impede the flow of helium
through the pore. Additionally, the results presented here
may be relevant to the interpretation of neutron scattering
measurements of the momentum distribution of helium in
porous media [23], where we would expect the structure

factor to exhibit a broad feature with intensity character-
ized by a power law depending on K at T ¼ 0.
As the radius of the pore is increased, the formation of

shells near the pore wall may serve to screen the central
region from the disorder and periodic modulation of the
wall potential. Whether this effect, plus the related reduc-
tion of the Luttinger parameter in the larger radius pores,
leads to a localization length longer than the tube length
is a crucial question for the experimental observability
of LL behavior.
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