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We study the phase diagram of repulsively interacting spin-1 bosons in optical lattices at unit filling,

showing that an externally induced quadratic Zeeman effect may lead to a rich physics characterized by

various phases and phase transitions. We find that the main properties of the system may be described by

an effective field model, which provides the precise location of the phase boundaries for any dimension, in

excellent agreement with our numerical calculations for one-dimensional (1D) systems. Thus, our work

provides a quantitative guide for the experimental analysis of various types of field-induced quantum

phase transitions in spin-1 lattice bosons. These transitions, which are precluded in spin- 12 systems, may be

realized by using an externally modified quadratic Zeeman coupling, similar to recent experiments with

spinor condensates in the continuum.
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Ultracold atoms in optical lattices constitute a highly
controllable scenario for the analysis of strongly correlated
systems, as highlighted by the realization of bosonic and
fermionic Mott insulators (MIs) [1–3]. Ongoing experi-
ments [4,5] are approaching the regime at which magnetic
properties, including the long-pursued Neél antiferromag-
net in spin- 12 fermions, could be revealed. Optically

trapped spinor gases, formed by atoms with various
Zeeman substates, are particularly interesting: Their inter-
nal degrees of freedom result in a rich physics, mostly
studied in the context of spinor Bose-Einstein condensates
(BECs) [6–9]. Spinor gases in lattices are particularly
exciting, since they provide unique possibilities for the
analysis of quantum magnetism.

Spin-1 gases are the simplest spinor system beyond the
two-component one. Depending on interparticle interac-
tions [6,7] (given by the s-wave scattering lengths a0;2 for
collisions with total spin 0 and 2), spin-1 BECs present
a ferromagnetic (FM) ground state (for a0 > a2, as in
87Rb F ¼ 1 [9]) or an antiferromagnetic (AFM) one (for
a2 > a0, as in 23Na [8]), also called polar. Spin-1 lattice
bosons have also attracted a strong interest, especially the
AFM case, for which a wealth of quantum phases have
been predicted [10–18]. For AFM interactions, in 2D and
3D the MI states at odd filling are nematic [13,17,19],
whereas in 1D quantum fluctuations lead to spontaneous
dimerization [10–13,16,20–22]. The case a0 ¼ a2 exhibits
an enlarged SU(3) symmetry with a highly degenerate
ground state [23].

Most spin-1 species are naturally close to this SU(3)
point (a0 � a2), where small external perturbations, as
Zeeman shifts, may have a large effect, reducing the sys-
tem symmetry and thus favoring different phases. Since
interactions preserve the magnetization M, the linear
Zeeman effect may be gauged out (although the phase

diagram depends on M [14,18]). On the contrary, the
quadratic Zeeman effect (QZE) plays a crucial role in
spinor gases. Despite its importance, the role of the QZE
in the quantum phases of spin-1 lattice bosons remains to a
large extent unexplored, with the sole exception of a recent
3D mean-field analysis [18], where it was shown that for
finite M the QZE may lead to nematic-to-ferromagnetic
(or partially magnetic) transitions.
This Letter discusses, for the first time to our knowledge,

the complete phase diagram (Fig. 1) for MI phases (with
unit filling) of spin-1 bosons in the presence of the QZE,
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FIG. 1 (color online). Mott phases of spin-1 lattice bosons at
unit filling, as a function of � � arctanðJ2=J1Þ � � and the QZE
D together with cartoons of corresponding phases. Thick solid
lines correspond to first-order phase transitions for any d. The
shaded region is the dimerized phase (only in 1D), with bold
(dashed) lines between the bullets indicating spontaneously
enhanced (reduced) correlations between neighboring spins.
Dashed ellipses visualize the XY spin planes, and single- and
double-headed arrows depict spins and nematic directors, re-
spectively. The symbols represent extrapolated 1D numerical
data (see the text).

PRL 106, 105302 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

11 MARCH 2011

0031-9007=11=106(10)=105302(4) 105302-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.105302


for the experimentally relevant case of a balanced mixture
(M ¼ 0). Combining an effective field theory (for any
dimension), density matrix renormalization group
(DMRG) calculations, and Lanczos diagonalization, we
obtain the phase boundaries, characterizing the phase tran-
sitions. We note that the QZE may be controlled by means
of microwave and optical techniques [24,25]. Hence, as
recently demonstrated for spinor BECs in the continuum
[26], our results show that a controlled quenching of the
QZE may permit the observation of field-induced phase
transitions in spin-1 lattice bosons, which are precluded by
simple use of the linear Zeeman effect due to conservation
of M and thus are absent in spin- 12 systems. In addition,

optical Feshbach resonances [27,28] permit the modifica-
tion of the ratio a2=a0, so that the full phase diagram
discussed below may be explored with state of the art
techniques.

We consider repulsively interacting ultracold spin-1 bo-
sons in a d-dimensional hypercubic lattice, prepared in a
balanced mixture (M ¼ 0). In free space, the interparticle
interactions are characterized by the coupling constants
g0;2 ¼ 4�@2a0;2=ma (with ma the atomic mass). In the

presence of a lattice the on-site energies ~g0;2 are propor-

tional to g0;2 and depend as well on lattice parameters (see,

e.g., Ref. [13] for details). At integer filling, the system is
in the MI regime if the (positive) on-site energies ~g0;2 � t,
where t is the hopping amplitude between neighboring
sites. In the second-order perturbation theory in t, the
low-energy physics is given by superexchange processes,
being described by an effective bilinear-biquadratic spin
Hamiltonian [11,13]:

Ĥ ¼ �X

hiji
½J1Si � Sj þ J2ðSi � SjÞ2� �DJ

X

i

ðSzi Þ2; (1)

where Si are spin-1 operators at site i, the sum runs
over nearest neighbors, J1 ¼ 2t2=~g2, and J2 ¼ 2t2=3~g2 þ
4t2=3~g0 (both are positive). The FM case (a0 > a2) corre-
sponds to J1 > J2, whereas the AFM case (a2 > a0) results
in J2 > J1. Typically, a0 � a2, which corresponds to the
vicinity of the SU(3) point (J1 ¼ J2). The last term in (1)
describes the QZE that is characterized by the externally
controllable constant q ¼ DJ and plays a crucial role in
the system. In the following, we introduce the standard
parameterization J1 ¼ �J cosð�Þ, J2 ¼ �J sinð�Þ, where
� lies in the interval ð��þ arctan13 ;� �

2Þ as the ratio

g2=g0 varies from 0 to þ1 [13], and use J �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J21 þ J22

q

as the energy unit (J ¼ 1).
Before starting with the detailed analysis of the mag-

netic ground states, we provide a quick overview of the
possible phases (which are sketched in Fig. 1). For � <
�3�=4 (J1 > J2), if D � 0, the ground state is a fully
polarized ferromagnet (Ising-FM), and sinceM ¼ 0 phase
separation into ferromagnetic m ¼ �1 domains is ex-
pected. For D< 0 the ground state for small values of
jDj is an XY ferromagnet (XY FM); i.e., the system fulfills
hSzi i ¼ 0 but presents a nonzero transversal magnetization.

This phase is ordered in dimensions d � 2, exhibiting in
1D a quasi-long-range order with leading power-law decay
of XY spin correlations. For larger jDj (keeping D< 0)
there is a phase transition between the XY FM and the so-
called large-D phase (also called Ising-nematic), in which
all atoms are in the m ¼ 0 Zeeman substate, and hence all
spin correlations decay exponentially. The field-induced
phase transition between large-D and XY FM is discussed
in detail below.
For � >�3�=4 (J1 < J2) the dominant correlations are

of the spin-nematic (quadrupolar) type [19,21]. A nematic
phase is characterized by its nematic direction, depicted as
a double-headed arrow in the sketches in Fig. 1. An XY
nematic phase occurs for D> 0, characterized for d � 2
by hðSþÞ2i � 0 and hSi ¼ 0, and in 1D by power-law
correlations of the quadrupolar order parameter and expo-
nentially decaying in-plane spin correlations. For D< 0
the large-D phase is favored. In 1D, a dimer nematic phase
occurs forD ¼ 0 [10–13,16,21,22]. We show below that in
1D the QZE induces a transition between the dimer phase
and the XY (or Ising) nematic.
To study the phase diagram near the SU(3) point, we

develop a low-energy effective field theory [29] based on
spin-1 coherent states jc i ¼ P

a¼x;y;zðua þ ivaÞjtai, where
jtai are three Cartesian spin-1 states [jtzi � jm ¼ 0i, jm ¼
�1i � 	ð1= ffiffiffi

2
p Þðjtxi � ijtyiÞ]. The real vectors u and v

(defined at each lattice site) satisfy the constraints u2 þ
v2 ¼ 1 and u � v ¼ 0. The vector u plays the role
of director vector for the nematic phases discussed below
(double-headed arrow in the sketches in Fig. 1). The aver-
age spin on a site fulfills M � hc jSjc i ¼ 2ðu
 vÞ.
The FM region � <�3�=4 is characterized by the

magnetization length M and the Euler angles (#, ’, �)
which parameterize the orientation of the mutually
orthogonal vector pair (M, u). Assuming u and v to be
smooth fields and performing a gradient expansion,
one obtains the effective continuum field Lagrangian
(see Ref. [29] for details). For D< 0, configurations with
# ’ �=2 and � ’ 0 are favored. Since ðM cos#;’Þ and
ðM;�Þ are pairs of conjugate variables, # and � become
‘‘slaves’’ and can be integrated out. The potential energy

is minimized at jMj ¼ M0 ¼ f1� �2g1=2, where � �
jDj=2Zðsin�� cos�Þ, with Z the lattice coordination num-
ber. We expand the effective action around the equilibrium
value, jMj ¼ M0 þ �, integrate out �, and obtain the
effective action for ’, which can be cast in the familiar
form of the (dþ 1)-dimensional XY model:

A XY ¼ ð�d�1=2gÞ
Z

ddþ1xð@�’Þ2: (2)

Here � is the ultraviolet lattice cutoff, and the coupling
constant g, acting as an effective temperature, reads

g�2 ¼ 1

2Z

�
1� �

�
þ h�2i

2�4

��
ð1� �Þð�þ 1þ �Þ

þ h�2i
�
1þ �

2�3

��
; (3)
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where h�2i ¼ g�Cd�
1�d

R
�
0 dkkd�1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ k2
q

is the fluc-

tuation strength and g2� ¼ ð8Z�4Þ=ð�þ 2�2Þ and m2
� ¼

Zð1� �2Þ=ð�=2þ �2Þ, respectively, the coupling constant
and mass of the � fluctuations, � � tan�=ð1� tan�Þ, and
C�1
d ¼ ð4�Þd=2�ðd=2Þ.
Model (2) describes a phase transition between XY FM

and large-D occurring at a nonuniversal g ¼ gc. For d ¼ 1
this is a Kosterlitz-Thouless (KT) transition, and the XY
FM phase has only a quasi-long-range order. For d � 2,
the phase transition belongs to the (dþ 1)-dimensional
XY universality class, the XY FM phase is ordered with a
spontaneously broken U(1) symmetry (’ ¼ ’0), and the
order parameter hcos’0S

x þ sin’0S
yi � 0. Once gc is

known, Eq. (3) constitutes an implicit equation to deter-
mine the transition boundary Dð�Þ; it has an universal

slope for �!1 [SU(3) point] given by �¼1�Oð��1=2Þ.
We have numerically evaluated the large-D to XY FM

boundary in 1D by means of DMRG calculations (follow-
ing the method of Ref. [30] for up to 42 sites). We found
that the most efficient way to locate the phase boundary
is to study the fidelity susceptibility [31], �ðDÞ ¼
�2lim�D!0 lnfjhc ðDÞjc ðDþ �DÞij2g=�D2, where the
quantity under the logarithm is the fidelity, i.e., the
Hilbert-space distance between the ground states at two
values of the QZE coupling. Figure 2(a) shows the evolu-
tion of the peak in �ðDÞ with increasing system size. The
finite-size scaling of the peak position as a function of
the number L of sites very accurately follows a 1=L2

law, confirming its KT character. Extrapolating the peak
position to L ¼ 1 yields the curve shown in Fig. 1, which
agrees perfectly with our field-theoretical description after
fitting the single parameter gc. An excellent agreement
with the numerics is obtained for gc � 0:6.

For d � 2, gc may be estimated by neglecting fluctua-
tions of M and demanding the critical jDj to match the

Ising value ZJ1 at J2 ¼ 0, yielding gc ¼ ð8Z=5Þ1=2. For a
square lattice the resulting gc � 2:53 compares favorably
with the Monte Carlo result gc � 2:20 for the classical
3D XY transition on a cubic lattice [32]. The corresponding
2D and 3D transition curves obtained from Eq. (3) are also
shown in Fig. 1. For F ¼ 1 87Rb in a 3D lattice of 426 nm
spacing and depth of 14 recoils (t=~g0;2 ’ 0:02, well in MI),

the large-D to XY FM transition occurs at �30 mG.
For 1D lattices with a transversal confinement of 12 kHz,
and depth of 7 recoils (t=~g0;2 ’ 0:18, well in MI), we

expect the transition at �160 mG.
For the AFM case, the effective theory can be formulated

by using the de Gennes tensor Qab � uaub � �ab=3 [33]:

A n¼ð�d�1=4gnÞ
Z
ddþ1xfð@�QabÞ2þ2�2m2

nQ
zzg; (4)

where the coupling gn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Z=2�

p
vanishes at the SU(3)

point [29] and m2
n ¼ D= sin� is the QZE-induced mass.

The u anisotropy (see the sketch in Fig. 1) is of the easy-
plane (easy-axis) type for D> 0 (D< 0). For d � 2 there
is a long-range nematic order for any D, with a single
transition at D ¼ 0, between a gapless XY nematic
with hðSþÞ2i � 0 at D> 0 and a gapped Ising nematic
hðSzÞ2i ¼ 0 at D< 0.
For 1D, atD ¼ 0 the AFM phase presents exponentially

decaying nematic (quadrupolar) correlations [albeit with a

very large correlation length �n / e4�=gn and a tiny exci-
tation gap �n / ��1

n close to the SU(3) point [20,21]].
In this phase the lowest excitations have total spin S ¼ 2,
which can be understood by noticing that in model (4)
the magnetization M is a composite field, Ma /
	abcQ

bd@
Q
cd, and thus S ¼ 1 excitations (which are cre-

ated by spin operators) have a twice larger gap �S ¼ 2�n.
However, this disordered-nematic phase [20,21] ac-

quires a very weak long-range dimer order hSi � Siþ1i �
hSi � Si�1i all the way to the SU(3) point, due to the
condensation of Z2 disclinations [12,34]. Although model
(4) does not capture dimerization, it may be used to deter-
mine the boundaries of XY nematic and Ising nematic
phases at small jDj, provided that Z2 disclinations do not
play role at the corresponding phase transitions.
For D> 0, the transition is KT (albeit driven by half-

quantum vortices [35]), whereas at D< 0 the transition is
Ising-like. Transition lines close to the SU(3) point fulfill

D�
c ’ �J2 expf�4�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� J1=J2

p g. As shown below, this
analysis provides a good insight on the dimer-to-nematic
transitions.
To characterize numerically the boundaries of the di-

merized phase (where fidelity susceptibility remains fea-
tureless), we employed level spectroscopy analysis [36]. In
a finite chain, two dimerized ground states (degenerate in
the thermodynamic limit) split in energy, so the lowest
excited state in the dimerized phase is unique and belongs
to theM ¼ 0 sector. In contrast, both in the large-D phase
(D<D�

c ) and in the XY nematic (D>Dþ
c ), the lowest

excited states are twofold degenerate, having M ¼ �1
and�2, respectively. Thus, in finite chains a level crossing
between the lowest excited singlet and doublet states oc-
curs when changing D. Our extrapolated results for D�

c ,
obtained by Lanczos diagonalization for periodic systems
of up to L ¼ 16 sites, are shown in Fig. 1 with 4 ! Dþ

c ,
h ! D�

c . Note that when approaching the SU(3) point our
numerics cannot recover the exponentially small dimer
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FIG. 2. (a) Evolution of the fidelity susceptibility �ðDÞ at the
boundary between XY FM and large-D phases, with increasing
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 as a function of D, for two cuts at
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region, which basically reduces to the D ¼ 0 line. The
finite-size extrapolation of Dþ

c follows a 1=L2 law, con-
firming its KT nature.

To determine the universality class of the D ¼ D�
c

transition, we have computed the central charge at
D ¼ 0, � ¼ �0:73� [37]. The block entanglement en-
tropy for an open 1D system of size L, divided into two
pieces of size l (block) and L� l (environment), behaves
as S ¼ c

6 log½L� sinð�lL Þ� þ A, where c is the central charge

and A is a nonuniversal constant [38,39]. Setting l ¼ L
2 ,

following Ref. [40], and using DMRG to evaluate S for
several L values, we obtain c ’ 1:5. The D ¼ Dþ

c KT line
has c ¼ 1; subtracting its contribution, we get c ¼ 1

2 for the

D ¼ D�
c line, confirming its Ising nature.

Finally, we discuss the behavior of the chirality 
 ¼
1
L

P
iðn̂i;þ1 þ n̂i;�1 � 2n̂i;0Þ ¼ 1

L

P
if3ðSzi Þ2 � 2g, which can

be easily monitored in Stern-Gerlach-like time-of-flight
experiments. Figure 2(b) shows 
 as a function of D. At
the FM side, 
 is discontinuous at D ¼ 0 indicating the
first-order character of the transition, which is clear since
for the Ising-FM phase (D> 0) 
 ¼ 1, while in the XY
FM phase (D< 0) for D ! �0 the ground state energy
is minimized at ðM;#; �Þ ¼ ð1; �2 ; 0Þ, and thus for

hðSzÞ2i ! 1
2 and 
 ! � 1

2 . At the XY FM to large-D tran-

sition, 
 practically saturates to �2 for a value of D close
to that obtained from the fidelity susceptibility analysis.
On the AFM side the limit D ! 0 is nonsingular, and
thus 
 ¼ 0 there. The nematic-to-dimer transitions do not
present any pronounced feature of 
. These transitions
could be revealed experimentally by Faraday rotation tech-
niques [41] or those recently explored in Ref. [42].

In summary, we have obtained the complete phase dia-
gram (for any dimension) for spin-1 lattice bosons in the
MI phase (at unit filling) in the presence of quadratic
Zeeman coupling. Our results provide hence a quantitative
guide for the analysis of field-induced quantum phase
transitions in lattice bosons, which, similar to recent ex-
periments with spinor BECs in the continuum [26], may be
realized by modifying the QZE by means of microwave
dressing. Starting in the large-D phase, and dynamically
modifying the QZE across the transitions discussed in this
Letter, should result in the FM regime in the appearance of
XY FM domains, similar to those observed in spin-1 BECs
[26], whereas quenches in the AFM regime should lead to
nematic domains with different hS2x;yi but homogeneous

hSi ¼ 0. We stress that such field-induced transitions are
precluded for spin- 12 , constituting an interesting novel

feature of lattice spinor gases.
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[22] G. Fáth and J. Sólyom, Phys. Rev. B 51, 3620 (1995).
[23] C. D. Batista, G. Ortiz, and J. E. Gubernatis, Phys. Rev. B

65, 180402(R) (2002).
[24] F. Gerbier et al., Phys. Rev. A 73, 041602(R) (2006).
[25] L. Santos et al., Phys. Rev. A 75, 053606 (2007).
[26] L. E. Sadler et al., Nature (London) 443, 312 (2006).
[27] P. O. Fedichev et al., Phys. Rev. Lett. 77, 2913 (1996).
[28] D. J. Papoular, G. V. Shlyapnikov, and J. Dalibard, Phys.

Rev. A 81, 041603(R) (2010).
[29] B. A. Ivanov and A.K. Kolezhuk, Phys. Rev. B 68, 052401

(2003).
[30] F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac, Phys. Rev.

Lett. 93, 207204 (2004).
[31] W.-L. You, Y.-W. Li, and S.-J. Gu, Phys. Rev. E 76,

022101 (2007).
[32] A. P. Gottlob and M. Hasenbusch, Physica (Amsterdam)

201A, 593 (1993).
[33] P.-G. de Gennes and J. Prost, The Physics of Liquid

Crystals (Oxford University, New York, 1995).
[34] T. Grover and T. Senthil, Phys. Rev. Lett. 98, 247202

(2007).
[35] S. Mukerjee, C. Xu, and J. E. Moore, Phys. Rev. Lett. 97,

120406 (2006).
[36] K. Okamoto and K. Nomura, Phys. Lett. A 169, 433

(1992).
[37] Strictly speaking, this point is inside the dimerized phase,

but since the correlation length is extremely large, the
system can be considered as gapless.

[38] V. E. Korepin, Phys. Rev. Lett. 92, 096402 (2004).
[39] P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002.
[40] L. Tagliacozzo et al., Phys. Rev. B 78, 024410 (2008).
[41] K. Eckert et al., Nature Phys. 4, 50 (2008).
[42] S. Trotzky et al., Phys. Rev. Lett. 105, 265303 (2010).

PRL 106, 105302 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

11 MARCH 2011

105302-4

http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1103/PhysRevLett.104.180401
http://arXiv.org/abs/1006.4674
http://dx.doi.org/10.1103/PhysRevLett.81.742
http://dx.doi.org/10.1143/JPSJ.67.1822
http://dx.doi.org/10.1143/JPSJ.67.1822
http://dx.doi.org/10.1038/24567
http://dx.doi.org/10.1103/PhysRevLett.87.010404
http://dx.doi.org/10.1103/PhysRevLett.87.010404
http://dx.doi.org/10.1103/PhysRevLett.88.163001
http://dx.doi.org/10.1103/PhysRevLett.88.163001
http://dx.doi.org/10.1103/PhysRevLett.90.250402
http://dx.doi.org/10.1016/j.aop.2003.08.009
http://dx.doi.org/10.1103/PhysRevA.68.063602
http://dx.doi.org/10.1103/PhysRevA.68.063602
http://dx.doi.org/10.1103/PhysRevLett.93.120405
http://dx.doi.org/10.1103/PhysRevLett.93.120405
http://dx.doi.org/10.1103/PhysRevB.69.094410
http://dx.doi.org/10.1103/PhysRevLett.95.240404
http://dx.doi.org/10.1143/JPSJ.76.013703
http://dx.doi.org/10.1143/JPSJ.76.013703
http://dx.doi.org/10.1103/PhysRevA.80.053615
http://dx.doi.org/10.1016/0550-3213(88)90073-9
http://dx.doi.org/10.1088/0953-8984/2/6/018
http://dx.doi.org/10.1103/PhysRevB.43.3337
http://dx.doi.org/10.1103/PhysRevB.51.3620
http://dx.doi.org/10.1103/PhysRevB.65.180402
http://dx.doi.org/10.1103/PhysRevB.65.180402
http://dx.doi.org/10.1103/PhysRevA.73.041602
http://dx.doi.org/10.1103/PhysRevA.75.053606
http://dx.doi.org/10.1038/nature05094
http://dx.doi.org/10.1103/PhysRevLett.77.2913
http://dx.doi.org/10.1103/PhysRevA.81.041603
http://dx.doi.org/10.1103/PhysRevA.81.041603
http://dx.doi.org/10.1103/PhysRevB.68.052401
http://dx.doi.org/10.1103/PhysRevB.68.052401
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevE.76.022101
http://dx.doi.org/10.1103/PhysRevE.76.022101
http://dx.doi.org/10.1016/0378-4371(93)90131-M
http://dx.doi.org/10.1016/0378-4371(93)90131-M
http://dx.doi.org/10.1103/PhysRevLett.98.247202
http://dx.doi.org/10.1103/PhysRevLett.98.247202
http://dx.doi.org/10.1103/PhysRevLett.97.120406
http://dx.doi.org/10.1103/PhysRevLett.97.120406
http://dx.doi.org/10.1016/0375-9601(92)90823-5
http://dx.doi.org/10.1016/0375-9601(92)90823-5
http://dx.doi.org/10.1103/PhysRevLett.92.096402
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1103/PhysRevB.78.024410
http://dx.doi.org/10.1038/nphys776
http://dx.doi.org/10.1103/PhysRevLett.105.265303

