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We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version

of the standard model. We show that charged strings, obtained by populating fermionic bound state levels,

become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top

quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not

required to bind a cosmic string in the standard model. Numerically we find the most favorable string

profile to be a simple trough in the Higgs vacuum expectation value of radius � 10�18 m. The vacuum

remains stable in our model, because neutral strings are not energetically favored.
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Introduction.—Various field theories suggest the exis-
tence of stringlike configurations, which are the particle
physics analogues of vortices or magnetic flux tubes in
condensed matter physics. They are called cosmic (or Z)
strings to distinguish them from the fundamental variables
in string theory and to indicate that they can stretch over
cosmic length scales. They can have significant cosmologi-
cal effects [1] and thus may be relevant to the early uni-
verse. Stable strings within the standard model of particle
physics would be particularly interesting because they
could be observable today.

In the standard model, string configurations [2–4] are
not topologically stable and thus can only be stabilized
dynamically. Here we focus on the role heavy fermions can
play in this stabilization. Since fermions can lower their
energy by binding to the string, their binding energy can
overcome the classical energy required to form the string
background. However, once we include the contribution to
the energy from bound fermions, we must also include the
contribution from the distortion of the entire fermion
spectrum, i.e., the vacuum polarization energy, since both
contributions enter at order @.

A string configuration with a vortex structure introduces
nontrivial behavior at spatial infinity. This property invalid-
ates the straightforward application of standard methods to
compute the vacuum polarization energy. Only recently
developed techniques [5,6] have made it possible to extend
these techniques to string configurations. Earlier Naculich
[7] showed that in the limit of weak coupling, fermion
fluctuations destabilize the string. The quantum properties
of Z strings have been connected to nonperturbative
anomalies [8]. A first attempt at a full calculation of the
quantum corrections to the Z-string energy was carried out
in Ref. [9]. Those authors were only able to compare the
energies of two string configurations, rather than compar-
ing a single string configuration to the vacuum; these
limitations arise from the nontrivial behavior at spatial

infinity. The fermionic vacuum polarization energy of the
Abelian Nielson-Oleson vortex has been estimated in
Ref. [10] with regularization limited to the subtraction of
the divergences in the heat-kernel expansion. Quantum
energies of bosonic fluctuations in string backgrounds
were calculated in Ref. [11]. Previously, we have pursued
the idea of stabilizing cosmic strings by populating fermi-
onic bound states in a 2þ 1 dimensional model [12].
Many such bound states emerge and some configurations
even induce an exact zero mode [7]. Nonetheless, stable
configurations were only obtained for extreme values of
the model parameters. In 3þ 1 dimensions, stability is
more likely because quantization of the momentum paral-
lel to the symmetry axis yields an additional multiplicity of
bound states.
Model and ansatz.—We consider a model of the elec-

troweak interactions in D ¼ 3þ 1 dimensions with some
technical simplifications, which we will justify a posteri-
ori. We set the Weinberg angle to zero, so that electromag-
netism is decoupled from the theory. We also neglect QCD
interactions, though we include the NC ¼ 3 color degen-
eracy. Finally, we consider a single heavy doublet that is
degenerate in mass, neglecting flavor mixing and mass
splitting within the doublet. The classical Higgs and gauge
fields are described by the Lagrangian

L �;W ¼ � 1

2
trðG��G��Þ þ 1

2
trðD��ÞyD��

� �

2
trð�y�� v2Þ2: (1)

We represent the Higgs doublet� ¼ ð�þ; �0Þ as a matrix,

� ¼ ��
0 �þ

���þ �0

� �
:

The gauge coupling constant enters via the covariant de-
rivative D� ¼ @� � igW�, and the SUð2Þ field strength
tensor is G�� ¼ @�W� � @�W� � ig½W�;W��. We then

have the fermion Lagrangian
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L� ¼ i ��ðPLD 6Dþ PR@Þ�� f ��ð�PR þ�yPLÞ�; (2)

where the Yukawa coupling f controls the strength of the
Higgs-fermion interaction, which generates the fermion
mass. Our model is thus characterized by the fermion

mass mf ¼ fv, the gauge boson mass mW ¼ gv=
ffiffiffi
2

p
, the

Higgs boson mass mH ¼ 2v
ffiffiffiffi
�

p
, and the Higgs vacuum

expectation value (VEV) v. When we introduce the fermi-
onic quantum corrections, we impose on-shell renormal-
ization conditions, in which we hold fixed mH, v, and the
residue of the pole in each particle’s propagator. These
choices exhaust the available counterterms, so we have to
adjust the gauge coupling g to match the physical gauge
boson mass. Since we neglect boson loops, this renormal-
ization scheme also leaves the fermion mass unchanged.

We construct the string as a classical background field
that is translationally invariant in the z direction. We work
in Weyl gauge W0 ¼ 0 and also introduce a parameter �1

that allows us to include a gauge field with winding number
n. We set n to unity in the actual calculations. The gauge
and Higgs fields are then

~W ¼ ns
fGð�Þ
g�

’̂
s ice�in’

�icein’ �s

 !
and

� ¼ vfHð�Þ
se�in’ �ic

�ic sein’

 !
; (3)

where s ¼ sinð�1Þ and c ¼ cosð�1Þ, and (�, ’) are polar
coordinates in the plane perpendicular to the string axis.
This ansatz yields the classical energy per unit length

Ecl ¼ 2�
Z 1

0
d��

�
2

g2

�
f0G
�

�
2 þ v2ðf0HÞ2

þ v2

�2
f2Hð1� fGÞ2 þ �v4ð1� f2HÞ2

�
; (4)

where primes denote derivatives with respect to �.
Variational width parameters wH and wG enter through
the respective profile functions for each field,

fHð�Þ ¼ 1� e��=wH ; fGð�Þ ¼ 1� e��2=w2
G : (5)

Energy considerations.—We compute the total binding
energy per unit length as a sum of three terms:

Etot ¼ Ecl þ NCðEvac þ EbÞ: (6)

The classical energy per unit length depends on the
model parameters and the variational parameters wH, wG,
and �1. The two contributions in Eq. (6) proportional toNC

summarize the fermionic effects. We measure all dimen-
sionful quantities in comparison to appropriate powers of
mf, so that Evac and Eb only depend on the ansatz parame-

ters wH, wG and �1. (There is a weak, logarithmic depen-
dence on the model parameters introduced via the on-shell
renormalization conditions; it is small for the values of the
coupling constants we consider.) QCD effects only enter
via the degeneracy factor NC. Since the considered energy

scales are well above the QCD scale, these interactions can
be neglected due to asymptotic freedom.
The fermionic effects are computed from the single

particle Dirac Hamiltonian in the two-dimensional sub-
space orthogonal to the symmetry axis of the string.
(We refrain from displaying this Hamiltonian, which we
extract using Eq. (3). For actual computations a specific
gauge must be adopted, complicating its presentation
[6,13].) The profiles fG and fH act as potentials in this
Hamiltonian. The vacuum polarization energy per unit
length in the string background Evac is the computationally
most expensive part of the calculation. It is computed from
the scattering solutions using the spectral method
[5,14,15], adapted to handle the long-ranged string poten-
tial [6,13]. Finally, the single particle Hamiltonian has
many bound state solutions; for �1 ¼ �

2 there exists an

exact zero mode. By explicitly populating these bound
states, we add charge to the string. Let �i � mf be an

eigenvalue of the two-dimensional Dirac Hamiltonian.

Then a state has energy ½�2i þ p2�1=2, where p is its con-
served momentum along the symmetry axis. To count the
populated states, we introduce a chemical potential � such

that minfj�ijg � � � mf. States with ½�2i þ p2�1=2 <�

are filled while states with ½�2i þ p2�1=2 >� remain empty,

which gives a Fermi momentum Pið�Þ ¼ ½�2 � �2i �1=2 for
each bound state. According to the Pauli exclusion princi-
ple we can occupy each state only once. This yields the
charge density per unit length of the string

Qð�Þ ¼ 1

�

X
�i��

Pið�Þ; (7)

where the sum runs over all bound states available for a
given chemical potential.
Equation (7) can be inverted to give � ¼ �ðQÞ. In

numerical computations we prescribe the left-hand side
of Eq. (7) and increase � from minfj�ijg until the right-
hand side matches. From this value� ¼ �ðQÞ, the binding
energy per unit length

EbðQÞ ¼ 1

�

X
�i��

Z Pið�Þ

0
dp½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2i þ p2

q
�mf� (8)

can be computed as a function of the prescribed charge.
Filling the available states up to a common chemical
potential minimizes Eb: if the towers of states built upon
two different �i had different upper limits, the energy
would be lowered by moving a state from the tower with
the larger limit to that with the lower one, without changing
the charge.
Our central task is to find Higgs-gauge field configura-

tions that yield Etot < 0 for a prescribed value of the charge
density, Q. In doing so, we must take care that any binding
we observe is not an artifact of the Landau pole, which
eventually sends Evac to minus infinity as wH and/or wG

tend to zero. It arises because in our approximation
(neglecting contributions from bosonic loops) the model
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is not asymptotically free. Once we identify a configuration
and parameter set with interesting numerical results we use
a method similar to that of Ref. [16] to ensure that the
Landau pole contribution is negligible.

Results.—The similarity to the standard model suggests
the model parameters g ¼ 0:72, v ¼ 177 GeV, mH ¼
140 GeV, and f ¼ 0:99. The Yukawa coupling estimate is
obtained from the top-quark mass mt ¼ 175 GeV. To con-
sider a fourth generation with a heavy fermion doublet that
couples to the standard model bosons, we will vary the
Yukawa coupling but keep all othermodel parameters fixed.

For the configurations we consider, the classical energy,
Eq. (4), is dominated by the Higgs potential contribution,
which scales as �w2

H=ðf4NCÞ compared to the fermionic
contributions. As �1 ! 0, the gauge field contribution goes
to zero, so this choice is favored classically. We will see
that �1 � 0 remains favored when Evac and Eb are in-
cluded, so that the stable charged string obtained in our
model is simply a trough in the Higgs VEV, without
significant gauge field contributions.

We give all numerical results in units of mf or 1=mf as

appropriate. In Fig. 1 we display the fermion contributions
for various sets of ansatz parameters. These lines terminate
at an end point where all available bound states (for all
longitudinal momenta) are populated and the charge can-
not be increased any further. The fermion contributions
favor a wide string for large charges, while they cause the
string to shrink for small charges. For very small charges,
corresponding to small widths, the calculation is unreliable
because of the Landau pole. (The problem arises for widths
much less than unity and coupling constants of order five or
larger. In our numerical search for stable configurations we
only consider wH � 2 and wG � 2.)

When we add more configurations, we observe a linear
relation between the charge and the minimal fermion
contribution to the energy, even though for any given
configuration, the fermion energy depends quadratically
on the charge, cf. Eqs. (7) and (8). This linear dependence

arises from a delicate balance between the vacuum polar-
ization (which determines the y intercept for a given con-
figuration) and the binding energies (which determine the
Q dependence). Figure 1 also suggests that the width of the
Higgs profile, wH, is the dominating scale (which is corro-
borated in Fig. 3, where Eb þ Evac is seen to be nearly
independent of �1, and thus of wG.) Both the number of
two-dimensional bound states and the magnitude of their
binding energies �i �mf vary roughly linearly with wH.

As a result, the minimal fermion contribution scales quad-
ratically with wH, as the classical energy does. To decide if
the string is stable we have to compare the leading scaling
withw2

H inEcl andEvac þ Eb. For large widths, the string is

stable if the resulting coefficient of the scaling with w2
H is

negative. For the physically motivated parameters men-
tioned above, the classical energy dominates and there is
no binding for any charge. However, as mentioned above,
the relative contribution from Ecl decreases like 1=f4. So
even a moderate increase of the fermion mass could lead to
binding. We remark that extrapolating the straight line in
Fig. 1 predicts that the vacuum energy should vanish for
very narrow strings, as we would expect. This estimate
overcomes the Landau pole obstacles that arise in a direct
computation.
To search for a stable string of fixed charge Q, we have

computed the vacuum polarization energy and the bound
state energies from the two-dimensional Hamiltonian for
several hundred configurations characterized by wH, wG,
and �1. We then prescribe the charge Q and, for those
configurations that can accommodate it according to
Eq. (7), we compute the binding energy as in Eq. (8).
Once we have computed the fermionic contribution to
Etot, the classical energy is a simple spatial integral, which
requires a negligible amount of additional computation.
As a result, in this procedure it is most efficient to vary the
Yukawa coupling. For a given charge, we then have a large
set of configurations that are labeled by given (discrete)
values of the variational parameters. We scan this set for
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FIG. 1 (color online). Total bound state and vacuum energy per
unit length as a function of charge density per unit length, in
units of the fermion mass, for �1 ¼ 0:4�. The dashed line
indicates the minimal fermionic contribution to the energy.
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FIG. 2 (color online). Total energy per unit length of optimal
string configurations as a function of charge per unit length, in
units of the fermion mass.
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the minimal total energy. If the variational parameters
covered the full configuration space, this treatment would
be equivalent to the self-consistent construction of the
minimal energy configuration. With our restriction to the
variational space, however, we only find an upper limit to
the exact minimum; if our treatment detects a bound
configuration, the existence of a stable charged cosmic
string is established.

In Fig. 2, we show the full energy per unit lengthEtot as a
function of the charge density per unit length for a variety
of Yukawa couplings f. The sharp increase at smallQ is an
artifact of the restriction of the ansatz parameters to avoid
the Landau pole. Increasing the Yukawa coupling from its
top-quark value decreases the relative contribution from
Ecl to Etot. We see that at f � 1:6 the large width pieces
from Ecl and Evac þ Eb approximately cancel. Increasing
the Yukawa coupling only slightly more, e.g., to f * 1:7,
yields a negative total energy per unit length at large charge
densities, which indicates that the string is lighter than the
corresponding density of free fermions. This limit corre-
sponds to a fermion mass of about 300 GeV with a typical
width for the stable charged string of about 10�18 m
(wH � 4=mf).

Surprisingly, we find that the fermion contribution to the
energy is nearly independent of the ansatz parameter �1, as
shown in Fig. 3. Even though the bound state spectrum
varies strongly with �1, and Evac þ Eb depends only
weakly on �1 [6], there are subtle cancellations within
the bound state spectrum itself that yield such a tiny gauge
field dependence of the fermion energy. As g � f, the
gauge field terms increase Ecl for �1 � 0. Hence Etot is
minimized for �1 � 0 in the cases we have studied.

Discussion.—We have seen that a heavy fermion doublet
can stabilize a nontrivial string background in a simplified
version of the electroweak standard model for a nonzero
fixed charge density. Light fermions would contribute only
weakly to the binding of the string, since their Yukawa

couplings are small. As a result, we can add them to our
model, e.g., to accommodate anomaly cancellation, with-
out significantly changing the result. The resulting con-
figuration is essentially of pure Higgs structure. Any
additional (variational) degree of freedom can only lower
the total energy. Hence embedding this configuration in the
full standard model, with the Uð1Þ gauge field included,
also yields a bound object. We see binding set in at
mf � 300 GeV, which is still within the range of energy

scales at which the standard model should provide an
effective description of the relevant physics, and also
within the range to be probed at the LHC. For such fermion
masses, recent calculations have also suggested the poten-
tial stability of multifermion bound states in a Higgs
background [17,18].
The fermion bound states carry nonzero angular mo-

menta, implying that the bound state wave functions de-
pend on the azimuthal angle. This might induce a more
complicated spatial structure of the string configuration
than the one adopted in Eq. (3). In particular, the cylindri-
cal analog of spherical ‘‘hedgehog’’ configurations, repre-
senting a Higgs field with unit winding within a Uð1Þ
subgroup of the full SUð2Þ isospin group, could be an
interesting extension of our work. Such alterations can
only lower the total energy, however.
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per unit length, in units of the fermion mass, for a variety of
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