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We extend the usual gravitational action principle by promoting the bare cosmological constant (CC) to

a field which can take many possible values. Variation gives a new integral constraint equation for the

classical value of the effective CC that dominates the wave function of the Universe. The expected value

of the effective CC, is calculated from measurable quantities to be Oðt�2
U Þ as observed, where tU is

the present age of the Universe in Planck units. This also leads to a falsifiable prediction for the observed

spatial curvature parameter of �k0 ¼ �0:0055. Our proposal requires no fine-tunings or extra dark-

energy fields but suggests a new view of time evolution.
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The cosmological constant (CC) was introduced by
Einstein in 1917 to ensure that general relativity (GR)
admitted a static cosmological solution. Introducing a
CC, �, required the addition of a term ��g�� to the

original field equations:

G�� ¼ �hT��i ! G�� ¼ �hT��i � �g��;

where G�� ¼ R�� � Rg��=2, R�� is the Ricci curvature

of g��, and hT��i is the expected energy-momentum ten-

sor of matter; � ¼ 8�G, c ¼ @ ¼ 1. It was later appreci-
ated that there were fundamental, reasons for its presence.
Quantum fluctuations result in a vacuum energy, �vac, that
contributes to the hT��i

hT��i ¼ T��
m � �vacg

��;

where T��
m vanishes in vacuo and hence

G�� ¼ �T��
m ��g��; � ¼ �þ ��vac:

The vacuum energy contributes ��vac to the effective CC,
�. Even if the ‘‘bare’’ CC, �, is assumed to vanish, the
effective CC will generally be nonzero. For � ¼ 0, the �,
and ��vac terms must exactly cancel. With no a priori link
between the values of � and ��vac this seems improbable.
With no cancellation, we expect j�j * Oð��vacÞ.

At late cosmic times �vac does not evolve. Given the
standard model of particle physics, and reasonable (e.g.,
supersymmetric) extensions of it, a late-time �vac of at least
M4

EW � ð246 GeVÞ4 appears to be unavoidable. Hence, it
seems natural that �eff

vac ¼ ��1� * M4
EW. This cannot be

the case because measurements of the expansion rate give
�eff
vac � ð2:4� 10�12 GeVÞ4 [1], at least 1056 times smaller

than the expected quantum contribution. This is the cos-
mological constant problem. Equivalently, assuming the
estimate of �vac from quantum fluctuations is accurate we
ask why � � ���vac to at least 56 decimal places?

Furthermore, the time t� ¼ ��1=2 � 9:7 Gyr is curiously
close to the present age of the Universe, tU � 13:7 Gyr.
First Barrow and Tipler [2], then Efstathiou [3] and

Weinberg [4], derived anthropic upper limits on j�j by
requiring that inhomogeneities grow by gravitational in-
stability long enough for galaxies to form. For �> 0 this
requires t� * 0:7 Gyr. But, there is still no reason why the
fixed time, t�, should correlate with an observer-dependent
time like tU. This is the coincidence problem.
We propose a simple extension of the usual action

principle in which the bare CC, �, will be promoted from
a parameter to a ‘‘field.’’ The variation leads to a new field
equation which determines the value of �, and hence the
effective CC, in terms of other properties of the observed
Universe. Crucially, one finds that the observed classical
history naturally has t� � tU. Fuller details are presented
elsewhere [5]. When it is applied to GR, � (and hence �
except when �vac evolves due to, say, a phase transition) is
a true constant and is not seen to evolve. Hence, the
resulting history is indistinguishable from GR with the
value of � put in by hand. Nonetheless, for given theory
of gravity such as GR, our model produces a firm predic-
tion for � in terms of other measurable quantities and is
testable by future observations. It should be stressed that
our proposal is equally applicable to theories of gravity
other than GR and to theories with more than 4 space-time
dimensions. As in 4-d GR, t� is still expected to be OðtUÞ.
If our model is correct, assuming an (approximately)

homogeneous and isotropic GR cosmology, the measured
value of � requires a specific value for the dimensionless
spatial curvature, �k0, of the observable Universe. The
predicted�k0 is consistent with current observational lim-
its and large enough to be detected in the near future.
Our model also specifies the probability, fð�Þd� observ-
ing a CC in the range ½�;�þ d��. Crucially, fð�Þ is
independent of the prior weighting given to different values
of � in the wave function of the Universe. We find that the
observed value of � is indeed typical, as is a coincidence
between t� and tU. Our proposal provides a realistic and
falsifiable model of the Universe that avoids the CC and
coincidence problems.
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Define the total action of the Universe on a manifoldM
with boundary @M and effective CC �, matter fields �a,
and metric g��, to be Itot½g��;�

a;�;M�. Usually, � is a

fixed parameter and the wave (partition) function of the
Universe, Z½�;M� � Z�½M�, is given by

Z�½M� ¼ X
eiItot½�gauge fixing terms�;

where fQAg are some fixed boundary quantities (general-
ized ‘‘charges’’) on @M, and the sum is over all histories
(i.e., configurations of the metric and matter, g��, �

a)

consistent with these fixed charges. The dominant contri-
bution to Z�½M� is from the histories for which Itot is
stationary for g�� and�

a variations that preserve the fQAg.
In these dominant histories, the matter and metric fields
obey their classical field equations.

When the surface terms in the gravitational action are
chosen to make Itot first order in derivatives of the metric,
for a non-null @M with induced 3-metric ���, a small

general metric variation gives

2��Itot ¼
Z

@M
j�jð1=2Þd3xN������

þ
Z

M
jgjð1=2Þd4xE���g��:

Put g�� ¼ �g�� þ �gðMÞ
�� , �g�� ¼ gð0Þ�� þ �gð@MÞ

�� , where the

�gðMÞ
�� vanish on @M but �gð@MÞ

�� do not. The vanishing of

�Itot in M implies that E��½gð0Þ��� ¼ E��½ �g��� ¼ 0. The

classical field equations for the metric are E�� ¼ 0. The
variation �Itot ¼ 0 then requires that ��� be fixed on @M.

However, if some part, @Mu, of @M lies in the causal
future of another part, @MI, the choice of fixed ��� is

constrained by E�� ¼ 0. In this example, we define fQAg to
be the smallest data set on @M that can be freely specified
which, when combined with E�� ¼ 0, fixes ��� up to a

gauge choice on @M. This definition is then extended to
the matter sector (for which the classical field equations are
�a ¼ 0). This is just a restatement of the usual variational
principle allowing for a causally interconnected @M.
Since E�� ¼ 0 depends on �, fixed fQAg and E�� ¼
�a ¼ 0 only fixes ��� and boundary matter fields for

given �, and we have ����j@M ¼ H ���� and

��aj@M ¼ P a��, which define H �� and P a.

Our proposal for solving the CC problems is simply to
promote the bare cosmological constant, �, from a fixed
parameter to a field (albeit one that is constant in space and
time). A similar promotion of � occurs in studies of
unimodular gravity. Equally, it can arise in a fundamental
theory, e.g., string theory, where there are many vacua with
different minima of the vacuum energy.

The wave function of the Universe, Z½M�, now includes
a sum over all possible values of � in addition to the usual
sum over configurations of g�� and �a. The effective CC,

�, is equal to �þ const and so a sum over all possible
values of � is equivalent to a sum over all � and so

Z½M� ¼ X

�

�½��Z½�;M� ¼ X

�

�½��Z�½M�;

where �½�� is some unknown prior weighting on the
different values of �. Provided�½�� is not strongly peaked
at a particular � value, we find that (at least classically) our
model is independent of the choice of �. The classical
histories that dominate the wave function are those for
which, with fixed fQAg, �Itot ¼ 0 for variations in the
summed-over fields. For variations of g�� and �a, this

gives E�� ¼ �a ¼ 0 as before. Since � is summed over, a
stationary Itot also now requires �Itot=�� ¼ �Itot=�� ¼ 0.
We define Iclassð�;MÞ to be Itot evaluated at the classi-

cal solution for g�� and �a and fixed fQAg; �Itot=�� ¼ 0

is then equivalent to

dIclassð�;MÞ=d� ¼ 0: (1)

Equation (1) yields a field equation for determining the
classical value of the effective CC. An observer sees a
classical history with effective CC, �, which satisfies
Eq. (1). Since � is a true space-time constant, the effective
CC will not be seen to evolve in this classical history.
The solutions of Eq. (1) depend on the definition of M,

fixed fQAg and surface terms in Itot; these choices should be
well-motivated and consistent with the symmetries of na-
ture. We demand that all observables including � should
be influenced only by parts of the Universe causally con-
nected to the observer. As Eq. (1) involves integrals over
M and @M, the only coordinate independent choice con-
sistent with this demand is that M is the observer’s causal
past. If our model’s predictions are accurate, this require-
ment could indicate that a notion of causal order is a
fundamental rather than emergent property of quantum
space-time. The wave function, Z½M�, is then a sum
over all possible configurations in the causal past, and
@M is composed of the observer’s past-light cone,
@Mu, and initial spacelike singularity @MI, (where say
	 ¼ 0). As we move towards @MI, the CC has less and
less influence on the evolution of the Universe. This mo-
tivates specifying the fQAg so that the initial state on @MI

is fixed independently of �. On @Mu, the fields then
depend on � through the classical field equations in a
calculable fashion. The canonical surface term choice is
the minimal term that renders the total action first order in
metric and matter derivatives. There are no obvious and
well-motivated alternatives.
There is now a simple argument for why t� � tU is

natural in our model. With Itot at most first order in metric
and matter derivatives, Eq. (1) is

Z

M
jgjð1=2Þd4x ¼ 1

2

Z

@M
j�jð1=2Þ½N��H �� þ �aP a�d3x:

(2)

The left-hand side is just the 4-volume, VM, of M.
The right-hand side is a ‘‘holographic’’ term defined on the
boundary (of area A@M, say). CosmologicallyN��H �� þ
�aP a �OðtrN=�Þ �OðH=�Þ, where H is the Hubble
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constant [with HðtUÞ � H0 today]. Hence, the right-hand
side of Eq. (2) is Oð��1H0A@MÞ. So, we expect solutions
of Eq. (2) to have ��OðH0ÞA@M=VM. Typically, H0 �
A@M=VM and H�1

0 is determined by t� ¼ ��1=2 and the

age of the Universe tU. Equation (2) links the values of t�
and tU and, in the absence of fine-tunings, we naturally
expect t� �OðtUÞ and hence ��Oð1Þt�2

U (� 10�122 in
units where G � 1). If there are extra dimensions with
volume VD, then A@M and VM would both be multiplied
by VD leaving A@M=VM and the expectation �� t�2

U is
unaltered [6]. If Eq. (2) admits a classical solution, then the
classical value of the effective CC will have the observed
magnitude, Oðt�2

U Þ � 10�122, without fine-tuning.
We now apply our model to our Universe where gravity

is described by GR to a good approximation. The observed
CC is given by the requirement that the total action Icl be
stationary with respect to small changes in �, i.e., Eq. (1)
We expand this equation by first evaluating Icl as a implicit
function of �. Icl is the total action Itot modulo the matter
and metric field equations, with

Itot ¼ IEH þ ICC þ IðuÞGHY þ Im þ . . . ;

where the . . . represent the �-independent surface terms on
@MI. IEH is the usual Einstein-Hilbert action, i.e., the
integral of ð2�Þ�1 ffiffiffiffiffiffiffi�g

p
R over M; ICC and Im are the

cosmological constant and matter actions, respectively,

and IðuÞGHY is the standard Gibbons-Hawking-York surface

term on @Mu. We remove the quantum vacuum energy
from Im and absorb it into the effective CC, � ¼
�þ ��vac. ICC and Im are then the integrals of
���1 ffiffiffiffiffiffiffi�g

p
� and

ffiffiffiffiffiffiffi�g
p

Lm over M respectively. Lm is

the effective matter Lagrangian density defined to vanish
in vacuo; T

��
m is the associated energy-momentum tensor.

Einstein’s equations give ð2�Þ�1R ¼ 2��1�� Tm=2,

which we substitute into IEH. I
ðuÞ
GHY can be transformed so

that Itot and Icl can be written as a volume integral on M
(see Ref. [5] for details).

For simplicity we focus on a homogeneous and isotropic
cosmology with metric

ds2 ¼ a2ð	Þ½�d	2 þ ð1þ kx2=4Þ�2dxidxi�;
where k determines the spatial curvature. The observer is at
ð	; xÞ ¼ ð	0; 0Þ and @MI is the surface 	 ¼ 0 where
a ¼ 0. We take T��

m ¼ ð�m þ PmÞU�U� þ Pmg
��;

U� ¼ �a�1r�	. With H ¼ a;	=a
2, Einstein’s equations

give H2¼��m=3þ�=3�k=a2 and a�1�m;	 ¼
�3Hð�m þ PmÞ. We find that to linear order in Oðkx2Þ,
Icl is [5]:

Icl ¼ 4�

3

Z 	0

0
a4ð	Þð	0 � 	Þ3½��1�� PeffðaÞ�d	;

where Peff¼Pm�Lm and �¼ðk=a2Þ½2=3þ	=ð	0�	Þ�.
Contributions to Peff can come from radiation, dark matter
and baryonic matter ( labeled ‘‘rad’’, ‘‘dm’’ and ‘b’, re-
spectively). For radiation and dark matter, Prad ¼ �rad=3,

Lrad=�rad � 0 and Pdm=�dm;Ldm=�dm � 0. For baryonic
matter, Pb=�b � 0, Lb ¼ �
b�b, where for some

b �Oð1Þ is calculable in principle from QCD. The chiral
bag model for baryon structure gives the estimate 
b � 1=2
[5]. Since �b � �rad, the dominant contribution to Peff

comes from baryonic matter and Peff � 
b�b. The terms in
Icl only depend on � through the scale factor að	Þ. We
define � lna=�� ¼ Að	Þ. � / a�2 and Peff � 
b�b /
1=a3, so �ða4�Þ=�� ¼ 2�Að	Þ and �ða4PeffÞ=�� �

b�bAð	Þ;Að	Þ follows from perturbing Einstein’s equa-
tions with respect to � and using � lna=�� ¼ 0 initially.
We find [5]

A ð	Þ ¼ að	ÞHð	Þ
6

Z 	

0

d	�

H2ð	�Þ :

Varying Icl with respect to �, we find that Eq. (2) for the CC
is equivalent to

k ¼ �
R	0
0 ð	0 � 	Þ3a4
b�bAð	Þd	R	0

0 a2ð	Þð	0 � 	Þ2ð4ð	0 � 	Þ þ 6	ÞAð	Þd	 : (3)

Note that this k is the average spatial curvature in the
causal past rather than necessarily the average spatial
curvature of the whole space-time; hence k > 0 does not
require the Universe to have a closed topology.
Equation (3) is a consistency condition that relates the

value of k to �b0 ¼ ��baryonð	0Þ=3H2
0 , the observation

time 	0 and, through að	Þ and Að	Þ, to �. So it gives k ¼
k0ð�; 	0Þ and hence� ¼ �0ðk; 	0Þ. If our model is valid, a
measurement of � at a given time predicts a specific value
of k and hence �k0 ¼ �k=a20H

2
0 . There are no free pa-

rameters in this prediction. Equation (3) requires k > 0;
i.e., the observable Universe has a positive spatial curva-
ture. For our Universe, taking ��0 � 0:73, �b0 � 0:0423
and TCMB ¼ 2:725 K we predict

�k0 ¼ �0:0055ð
b=0:5Þ:
This is consistent (for all 
b 2 ð0; 1�) with the current 95%
CI of�k0 2 ð�0:0133; 0:0084Þ [1]. A combination of data
from the current Planck satellite CMB survey with mea-
surements of baryon acoustic oscillations (BAO) will be
able to test this prediction of �k0.
Inflation in the early Universe is usually invoked to

explain why the curvature term is so small today. The
duration of inflation, given by the number of e folds N,
depends on initial conditions since different inflating
regions in the same Universe will have different N.
Hence,�k is an environmental parameter which is stochas-
tically different in each inflating region. In our model the
extent to which the observed value, �obs, is natural is
determined by the probability of living in a bubble universe
where k is such that �0ðkÞ �Oð�obsÞ. Larger values of �
require smaller k, and hence larger N. We define fð�Þd�
to be the probability that � 2 ½�;�þ d�� and fNðNÞdN
is the probability that N 2 ½N;N þ d��. Gibbons and
Turok (GT) calculated fNðNÞ ¼ cðNÞe�3N for single field,
inflation using the natural measure on classical solutions
in GR [7]; cðNÞ has a relatively weak N dependence.
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Alternatively, a volume weight e3N gives fN � cðNÞ. With
NðkÞ ¼ �N � lnðk= �kÞ=2 (and �N > 50–62 for �k=a20H

2
0 <

0:02 in realistic models), we find (up to a normalization
factor):

fð�Þ ¼ fNðN½K0ð�Þ�Þjd lnK0ð�Þ=d�j:
If fN / e�3N then �obs is inside the 80% CI from fð�Þ.

Including Bayesian selection makes the observed �
appear even more typical and reduces the dependence on
fNðNÞ. If� is too large the formation of galaxies is greatly
suppressed [2]. This limits observable values by � &
103�obs. Bayesian selection (in the context of a multiverse)
is sufficient to explain why � is not too large, but whether
or not the �obs is typical is heavily dependent on the
unknown relative weighting of different values of the CC
in the multiverse (i.e., the prior distribution, here repre-
sented by�½��). In our theory, the unknown weighting� is
effectively replaced by the calculable prior fð�Þ. In the
allowed � range the N changes by <2:5% and so fð�Þ
depends only weakly on fN. We follow Ref. [8] and use the
number of galaxies for the number of observers. If fN �
const in the allowed range, �obs lies just out the 68% CI,
whereas with fN / expð�3NÞ it lies just inside. In either
case, �obs is typical in our model.

The ‘‘coincidence’’ of tU=t� �Oð1Þ or��=�m �Oð1Þ
is also a typical occurrence in our model. Observations
give R � lnðt�=tUÞ � 0:35. We calculate jRj< 0:35 has a
probability of 9%–15%, depending on fN . For jRj< ln2 it
is 16%–25%. Bayesian selection with an assumed uniform
prior gives � 4% and 8.5%, respectively. Similarly seeing
��0 2 ½0:2; 0:8� has a 14%–22% chance in our model, and
6.8% with just Bayesian selection.

At any given location and time, the wave function is
dominated by a classical history in which � takes a single
constant value. This means that, classically, no evolution of
� can be observed. Yet the history that dominates, and its
associated � value, is different at different observation
times [9]. We see a history with CC, �1. A observer in
our past would see a different history with CC �2 >�1.
Yet, for measurements of �1 and �2 to be compared,
information would have to be sent from one history
to another. At the level of classical physics there is no
mechanism for this. Observers will only see a history
consistent with the constant � given by Eq. (2).
Crucially, this includes registering all previous measure-
ments of � as being consistent with � ¼ �1. Put simply,
we do not see the past as an observer in the past would have
seen it. This behavior implies a new view of time in
which the whole history changes slowly. It arises as a
consequence of taking M to be the observer’s causal
past which in turn was necessary for causality when �
was promoted from an external parameter to a field.

As this behavior is an integral part of our model, it is
tested indirectly through the �k0 ¼ �0:0055ð
b=0:5Þ pre-
diction. Classically, this movement from one history to
another has no directly detectable consequences. From a

quantum perspective, the wave function is dominated by a
superposition of histories with a small spread in � of

��� ð�2Itot=��
2Þ�1=2, This superposition could give

rise to new effects if a system were sensitive to shifts of

Oð��Þ. However, with��0�Oð1Þ, ��=���1=2=Mpl�
10�60	1 today, this effect looks undetectably small.
In summary: we have introduced a new approach to

solving the CC and coincidence problems. The bare CC,
�, or equivalently the minimum of the vacuum energy, is
allowed to take many possible values in the wave function,
Z, of the Universe. The value of the effective CC in the
classical history that dominates Z is given by a new equa-
tion, Eq. (1). This proposal is agnostic about the theory of
gravity and the number of space-time dimensions. We have
applied it to a universe in which gravity is described by
GR. The observed classical history will be completely
consistent with a nonevolving CC. In an homogeneous
and isotropic universe with realistic matter content we
find that the observed value of the effective CC is typical,

as is a coincidence between 1=
ffiffiffiffi
�

p
and the present age of

the Universe, tU. Unlike explanations of the CC problem
that rely only on Bayesian selection in a multiverse, our
model in independent of the unknown prior weighting
of different � values, and makes a numerical prediction
for the observed spatial curvature parameter, �k0 ¼
�0:0055ð
b=0:5Þ, that is consistent with current observa-
tions but can be tested in the near future. We describe a new
solution of the CC problems, consistent with observations
and free of fine-tunings, new forms of dark energy, or
modifications to GR. It implies a new view of time and is
subject to high-precision test.
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