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Optical vortices are lines of phase singularity which percolate through all optical fields. We report the

entanglement of linked optical vortex loops in the light produced by spontaneous parametric down-

conversion. As measured by using a Bell inequality, this entanglement between topological features

extends over macroscopic and finite volumes. The entanglement of photons in complex three-dimensional

topological states suggests the possibility of entanglement of similar features in other quantum systems

describable by complex scalar functions, such as superconductors, superfluids, and Bose-Einstein

condensates.
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Most current optical experiments on entanglement use
spontaneous parametric down-conversion (SPDC) as the
source of correlated photon pairs. The simultaneous con-
servation of both energy and momentum in the SPDC
process leads to various properties of the photons exhibit-
ing quantum entanglement. For example, correlations are
present in the spatial modes of the signal and idler photons
[1,2] including those modes associated with orbital angular
momentum (OAM) [3–5]. Eigenmodes of optical OAM
have phase singularities (optical vortices) along the beam
axis. These lines are zeros of the complex field amplitude.

Optical vortex lines are found throughout optical
speckle, occurring between the bright speckles and seen
as dark points where the singularity lines intersect the
imaged plane. In three-dimensional (3D) speckle, these
vortex lines form a fractal tangle, percolating through
space [6], with many closed loops which are occasionally
linked together [7]. Light produced by SPDC is spatially
incoherent and can also be considered as an example of
optical speckle [8], making this light a good candidate in
which to observe topological vortex features. Here we
show that quantum correlations exist between spatially
separated vortex features of electromagnetic fields.
Specifically, we show that links of vortex loops embedded
within optical fields produced by SPDC are entangled.

The Laguerre-Gaussian (LG) set of optical modes con-
tains axial vortex lines and hence is a convenient basis for
specifying modal superpositions with linked vortex loops.
These LG modes are characterized by an azimuthal phase
dependence expði‘�Þ, giving ‘@ as the OAM per photon
[9]. The entanglement of the OAM of photons has been
observed experimentally [4,10] and, more recently, has
been demonstrated by violating the Bell inequality within
2D subspaces [11]. However, in this present work, the
entanglement of OAM is not our primary concern but
rather the entanglement of macroscopic vortex features

that can be synthesized by combining LGmodes, including
those possessing no OAM.
The modal superpositions that form the links can be

generated by using specially designed diffractive optical
components (holograms). Although specified only in two
dimensions, holograms determine the propagation of the
whole optical field behind them. Previously, holograms
have transformed the Gaussian output of a laser or
single-mode fiber into a field with a pair of linked phase
singularity loops (Hopf links) [12]. The same hologram
that transforms a Gaussian mode into the Hopf link can be
used in reverse as a measurement hologram; that is, it can
be used to detect the 3D feature. In our case, this trans-
forms a Hopf link back to the fundamental Gaussian mode
which can then, and only then, be coupled into a single-
mode fiber and photon detector. A single photon detection
constitutes the single photon measurement of the 3D topo-
logical state.
In modal superpositions of this kind, the linked vortex

lines intertwine within regions of very low optical inten-
sity. The practical generation and observation of these
topological features relies on the numerical optimization
of the complex mode coefficients to separate the vortex
lines by regions of higher intensity [12]. Once the optimum
coefficients of the modal components in the superposition
are determined, it is a simple matter to design the corre-
sponding detection hologram.
The modal superposition to produce the vortex Hopf link

is given by

j�Hopf linki ¼ 0:264j0; 0i � 0:628j0; 1i þ 0:426j0; 2i
� 0:596ei2�j2; 0i; (1)

where j‘; pi denote the LG mode with p radial nodes and
azimuthal index ‘ and � defines the orientation of the Hopf
link in the x-y plane. We use a pump beam of zero OAM in
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the state j0; 0i from which the entangled SPDC state can be
written in the LG basis as

j�SPDCi ¼
X1

ps¼0

X1

pi¼0

X1

‘¼�1
c
‘;ps

�‘;pi
j‘; psij � ‘; pii; (2)

where jc‘;ps

�‘;pi
j2 is dependent on the down-conversion pro-

cess and is the probability of generating a photon pair in the
j‘; psi and j � ‘; pii states [13–15]. The state (2) has a
range of different modes including the modes which com-
prise the superposition that could form the links. We can
separate the superposition (1) into two components con-
sisting of modes with zero and nonzero OAM (‘ ¼ 0 and
‘ ¼ 2, respectively), if we define the state j0; pi ¼
0:329j0; 0i � 0:782j0; 1i þ 0:530j0; 2i, which we get by
normalizing the first three terms of (1). We can then write
the Hopf link state as j�Hopf linki ¼ �j0; pi � �ei2�j2; 0i,
where � ¼ 0:803 and � ¼ 0:596. We can then define our
measurement states in a two-dimensional (2D) subspace.
The advantage of a 2D subspace is that it lends itself
to traditional tests of entanglement such as the Bell in-
equality [16].

At the heart of entanglement are the correlations exhib-
ited in the bases corresponding to incompatible observ-
ables (e.g., linear and circular polarization). In a 2D state
space, the concept of incompatible observables is best
illustrated by a reference to a Bloch sphere where, for
example, a rotation of linear polarization is equivalent to
a change in phase between the constituent circular polar-
izations. We can cast the measurement of Hopf links
similarly, in that we can have an unconventional Bloch
sphere based on superposition (1). The north pole of this
Bloch sphere corresponds to the weighted superposition
�j0; pi, and the south pole corresponds to �j2; 0i. The
equatorial states of this Bloch sphere are then the Hopf
links oriented at different angles, � [see Fig. 1(a)]. To show
entanglement between the Hopf links requires demonstrat-
ing that the strength of nonlocal correlations depend not
only on the magnitude of the modes (the poles of the
sphere) but also on their relative phases. We test this phase
dependence by changing the relative angular orientations
of the topological features measured in the signal and idler
beams. If the observed correlations were simply and solely
due to classical conservation, then the strength of the
correlations would show no phase dependence. We also
show the confinement of the Hopf link to a finite volume
and the dependence of the entanglement on relative spatial
position. To one of the holograms, we introduced lateral
and axial shifts, the latter giving a Gouy phase between the
modes [17]. Rather than moving any of the optical com-
ponents, we apply these shifts directly by setting the phase
of the modal superpositions for the hologram design.

We employ the experimental configuration shown in
Fig. 2(a). A quasi-cw, mode-locked, UV pump beam at
355 nm is incident on a 3-mm-long type-I barium borate

(BBO) crystal. The crystal is oriented in a collinear ge-
ometry with the down-converted 710 nm signal and idler
photons both incident on the same beam splitter. The exit
face of the crystal is imaged to separate spatial light
modulators (SLMs). The SLMs are used to display the
measurement holograms which specify the links we aim
to detect. These SLMs are reimaged to the input facets of
single-mode fibers which are themselves coupled to ava-
lanche photodiodes for single photon detection. The coin-
cidence count rate from the two detectors is recorded as the
holograms displayed on the SLMs are updated. The SLMs
that we use are phase-only modulators; however, by ap-
propriate design of an off-axis hologram, they can generate
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FIG. 1 (color). A Bloch sphere for Hopf links and correlations
among the constituent LG modes in the state (1). (a) A Bloch
sphere for the Hopf links has the state �j0; pi (with constant
phase and a small nonzero on-axis intensity) and �j2; 0i (or
�j � 2; 0i) at the poles. The equatorial states correspond to the
Hopf links. (b) Red bars show the correlation between the ‘ ¼ 0
states that make up j0; pi (north pole), and the blue bar corre-
sponds to the correlation between the ‘ ¼ 2 and ‘ ¼ �2 states
(south pole).
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FIG. 2 (color online). Experiment scheme. (a) The topological
states are measured by encoding holograms displayed on sepa-
rate SLMs. (b) Using one of the arms in the same setup, we back-
project through the measurement hologram to verify the topol-
ogy of the field. (c) The recovered topology is a Hopf link; x, y,
and z refer to shifts in the x, y, and z directions, respectively.
Dimensions have been normalized by the beam waist w0 and
Rayleigh range zR.
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or detect any modal superposition, even those involving a
modulation in intensity [18].

We confirmed that this hologram indeed generates a
Hopf link by replacing one of the detectors with a laser
diode sending light back to the SLM and then recovering
the phase and intensity of the diffracted light field in the
plane of the crystal [Fig. 2(b)] [12]. We then programmed
the SLM to introduce axial displacements of the vortex
positions with respect to the plane of the crystal allowing
us to tomographically reconstruct the link structure as
shown in Fig. 3(c).

In the image plane of the crystal, the signal and idler
fields are complex conjugates of each other. This means if
the photons are projected by the holograms which are
encoded in states which are themselves complex conju-
gates of each other, the correlation between signal and idler
beams should be high. The LG basis that we use to describe
our topological features is an orthonormal, complete set,
and consequently the correlation between any two modes
of differing indices should, ideally, be zero. Before

examining the correlation between the topological features
themselves, we examine these measured correlations be-
tween the four LG modes that form the Hopf link [see
Fig. 1(b)]. We calculate the ratio of the measured coinci-
dent rate C to that anticipated from accidental coinci-
dences; we call this ratio the quantum contrast, and it is
given by QC ¼ C=ðSiSs�tÞ, where Si and Ss are idler and
signal count rates, respectively, and �t is the timing reso-
lution of our coincidence counting electronics [19]. As
anticipated, the correlation between any mode and its
complex conjugate is high, while its correlation with all
other modes is low. We note, however, that some nominally
orthogonal modes have residual correlations, which arise
from the finite aperture of our system. This imperfection
potentially reduces the degree of the entanglement, but, as
we show below, the entanglement we observe is still suffi-
cient to violate a Bell inequality.
With the SLMs displaying holograms to measure the

Hopf link and its complex conjugate, we measure the
coincident count rate as a function of their angular orien-
tations �s and �i. The sinusoidal nature of the coincidence
count rates is reminiscent of the coincidence curves used
to show a violation of the Bell inequality in the case of
polarization-entangled photons. Indeed, the fact that our
state can be written in terms of two orthogonal sets of
modes means we can perform a similar analysis for our
Hopf links [16]. We use the Clauser-Horne-Shimony-Holt
inequality [20], which gives the Bell parameter S and is
violated when jSj> 2. The extent to which this inequality
can be violated is an indication of the degree of entangle-

ment of a quantum system, with S taking on a value of 2
ffiffiffi
2

p
for maximally entangled states.
Because the Hopf link contains a component with ‘ ¼ 0,

the Hopf link and its complex conjugate are not completely
orthogonal; hence, the coincidence rate should not fall to
exactly zero as would be the case for the maximally
entangled case [21]. We obtain lower minima in our coin-
cidence curves, and this is a consequence of the interfer-
ence arising from modes that are ideally orthogonal [i.e.,
the off-diagonal modes in Fig. 1(b)] but experimentally
give residual coincidence counts. Figure 3(a) shows a
sample set of coincidence curves used to calculate S
from four different orientations of the signal hologram as
the orientation of the idler hologram is varied from 0 to �
(corresponding to a phase change between the �j0; pi and
�j2; 0i of 0 to 2�i ¼ 2�). The near sinusoidal shape is an
indication that we largely remain in a 2D state space.
Following Ref. [22], we obtain a Shannon dimensionality
of 1.92. We measure S to be 2:72� 0:012 when the signal
and idler holograms are laterally and axially aligned,
greater than the classical limit of 2, thereby demonstrating
that the Hopf links we measure in the down-converted
fields are indeed entangled.
The unique aspect of these entangled states is that the

topological feature is spatially localized in 3D. We show
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FIG. 3 (color). Experimental evidence of entanglement of
topological states. (a) Coincidence curves show a phase depen-
dence on angular orientations �s and �i from which we obtain
S ¼ 2:72 when the signal and idler holograms are both on the
z ¼ 0 plane. (b) S ¼ 2 surface for a Hopf link and (c) for a
simple superposition of OAM states. x, y, and z refer to shifts in
the x, y, and z directions, respectively. Dimensions have been
normalized by the beam waist w0 and Rayleigh range zR.
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this by measuring S as a function of both lateral and axial
displacements of the measured links and compare this
volumetric scan to that obtained for the simple superposi-
tion of j � ‘iOAM states used to show the entanglement of
OAM [Figs. 3(b) and 3(c)]. In this latter case we use a
superposition of ‘ ¼ �2, measuring the count rate and
obtaining S as a function of lateral and axial displacement.
As might be expected, for pure OAM entanglement we see
that the value of S falls for lateral displacement, yet the
structural stability of the mode means that S does not fall
with axial displacement. By contrast, we see that the
volume over which the Hopf link violates the Clauser-
Horne-Shimony-Holt inequality (S > 2) is bounded in
both the lateral and axial directions to a size similar to
that of the experimentally recovered Hopf link [Fig. 2(c)].

The SLMs that we use have a diffraction efficiency of
about 60%. We are using off-axis holograms, meaning that
any phase noise in the SLM will affect only the diffraction
efficiency and not the phase of the measured state, which is
instead set by the spatial form of the hologram. We note
that the topology of the Hopf link is recreated in the back-
projection experiment, inferring that these are the states we
measure. In any event, the fact that we violate the Bell
inequality is an unambiguous demonstration of quantum
entanglement and demonstrates that we are not signifi-
cantly constrained by the limitations of our SLMs.

Whereas earlier work in quantum entanglement has
concentrated on two separated point properties of the field
(e.g., polarization) or two field cross sections (e.g., OAM),
our present work shows a signature of entanglement be-
tween two separated and finite volumes. Specifically, our
measurements relate to topological features of the scalar
electromagnetic field. Similar wave descriptions are
equally applicable to various physical situations involving
cold atoms, superfluids, and other condensed matter sys-
tems. The existence of vortex lines and related topological
features in these systems is an area of intense theoretical
and experimental investigation [23–25]. We conjecture that
the quantum entanglement of topological features of vortex
lines may extend to cover these other system types. The
transfer of the topological vortex states from light to a
Bose-Einstein condensate [24,26] may be a route to the
preparation of macroscopically entangled topological
states.

A further point is that, since topological states are usu-
ally robust to perturbation [27], they may offer a route to
increasing the stability of the entangled state. Indeed, the
stability of topology has, in two-dimensional physics, led
to the field of topological quantum computation [28]. The
degree to which three-dimensional vortex topological fea-
tures are stable or not depends upon the details of the

physical system in which they occur. For example, if vortex
lines are subject to a repulsive force between them, as can
be the case in a nonlinear media [29], this acts to stabilize
their topology. Unfortunately, for light beams in free space
this is not the case, and therefore topology is unlikely to
mitigate, for example, the effect of atmospheric turbulence.
However, other physical systems may not be limited in this
way.
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