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We address the question of whether superfluidity can survive in the case of fermion pairing between
different species with mismatched Fermi surfaces using as an example a population-imbalanced mixture
of °Li atomic Fermi gas loaded in a two-dimensional optical lattice at nonzero temperatures. The
collective mode is calculated from the Bethe-Salpeter equations in the general random phase approxi-
mation assuming a Fulde-Ferrell order parameter. The numerical solution shows that, in addition to low-
energy (Goldstone) mode, two rotonlike minima exist, and therefore, the superfluidity can survive in this

imbalanced system.
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Introduction.—Although the Fulde and Ferrell (FF) [1]
and the Larkin and Ovchinnikov (LO) [2] phases were
introduced quite a long time ago, they are still of very
high interest because the question of whether the super-
conductivity or superfluidity can survive in polarized sys-
tems remains unanswered. In the FFLO phase, Cooper
pairing occurs between a fermion (or up and down quarks)
with momentum k + q and spin | and a fermion with
momentum —Kk + q, and spin |. As a result, the pair-
momentum is 2q and the order parameter becomes spa-
tially dependent. The mean-field treatment of the FFLO
phase in a variety of systems, such as superconductors with
Zeeman splitting and heavy-fermion superconductors [3],
atomic Fermi gases with population imbalance loaded in
optical lattices [4-6] and harmonic traps [7], and dense
quark matter [8] shows that the FFLO state competes with
a number of other states, such as the Sarma (q = 0) states
[9], but in some regions of momentum space the FFLO
phase provides the minimum of the mean-field expression
of the Helmholtz free energy. Since it is known that with
decreasing dimensionality, the pair fluctuation becomes
increasingly important, and therefore, there is no a priori
justification for applying the mean-field calculations in
one-dimensional (1D) systems. Thus, in what follows we
consider an imbalanced mixture of a Li atomic Fermi gas
of two hyperfine states | 1) and | |) with contact interaction
loaded into a 2D square optical lattice. The total number of
atoms is M = M; + M|, and they are distributed along N
sites. The FFLO state is expected to occur on the BCS side
of a Feshbach resonance, where the effective attractive
interaction between fermion atoms leads to BCS type
pairing. We also assume that the lattice potential is suffi-
ciently deep such that the tight-binding approximation is
valid and the system is well described by the single-band
attractive Hubbard model (on the BCS side the Hubbard
parameter U is negative, but in what follows U denotes its
absolute value). The tight-binding form of the electron
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energy is &; (k) = 2J(1 — Y, cosk,a) — uy;, where up)
is the corresponding chemical potential, J is the tunneling
strength of the atoms between nearest-neighbor sites, and
the lattice constant a = A/2 (A is the laser wavelength and
in our numerical calculations we use A = 1032 nm). The
order parameter is assumed to vary as a single plane wave
A, = Aexp(2iq.r). Unlike the population-balanced sys-
tems, for which the spectrum of the collective excitations
has been obtained by linearizing the Anderson-Rickayzen
equations [10], by the Kadanoff and Baym approach [11],
and by the Bethe-Salpeter (BS) formalism [12], to the best
of our knowledge the FFLO collective modes have been
studied in (i) a 1D population-unbalanced trapped system
[7] by using the linear response of the equilibrium system
by supplementing the Bogoliubov—de Gennes (BdG) equa-
tions with a self-consistent random phase approximation,
(ii) a 1D superconductor [13] by transforming slow defor-
mations of the order parameter into small corrections to the
BdG Hamiltonian, and (iii) a cold-atom rotated system [14]
by locating the poles of the many-body scattering function.
We present here a theory which is the first calculation to
find the spectrum of the collective excitations in the pres-
ence of FF phase which goes beyond the mean-field gap,
number, and pair-momentum equations by solving the BS
equations for the spectrum of the collective excitations in
the general random phase approximation. Since at a finite
temperature the FF states compete with the Sarma states,
before calculating the collective modes we have obtained
the phase diagram. In Fig. 1, we show the phase separation
between the FF, Sarma, and normal states for a total filling
factor f = f; + f; = 0.5 (f;; = M;;/N) and an interac-
tion strength U/J = 2.64, which is similar to the phase
diagram in the case of 3D optical lattice [5]. The polariza-
tion P = (f; — f)/(f; +f) that we shall use in
collective-mode calculations is P = 0.1. In this case, the
FF states lower the system free energy compared to
the corresponding Sarma states at low temperatures. As
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FIG. 1. The phase diagram of the imbalanced Fermi gas in

a 2D lattice (FF = black, Sarma = gray, normal = white).
The total filling factor is f = 0.5. The interaction strength is
U/J = 2.64, where J/E, = 0.0783. For °Li atomic Fermi gas
and A = 1030 nm, E; = 1.293 X 107! eV.

the temperature increases the Sarma states provide the
minimum of the free energy. If the temperature is increased
even further the normal polarized Fermi gas becomes
energetically favorable. The results from our numerical
solutions of the BS equation show that (i) there exists a
low-energy (Goldstone) mode in the FF state, correspond-
ing to the fluctuations of the order parameter phase, but
since the FF state breaks both gauge and translational
symmetry there are two different sound velocities in the
long wavelength limit, and (ii) the Goldstone mode has
rotonlike minima.

Spectrum of the collective excitations.—We concern
ourselves with a population-imbalanced 2D Fermi gas
with attractive interactions described by the Hubbard
model. In this case the Fourier transform of the single-
particle Green’s function is a 2 X 2 matrix G = (gﬂ gﬁ)

In the mean-field approximation the corresponding matrix
elements are as follows:

a2 ay2
GH (K 10,) = — L
lw,, — w+(k’ (I) lw, + w—(k’ Q)

qy2 a2
G%il(k, lw,,) = (vi) (1) ,
w, —ow,kq w,+o (Kkq)

GIil(k, lw,,) = G{iT(k, 1w,

. q[ 1 1 ]
= U UV - .
Lo, -0k q) 10, + o (kq)

The symbol w,, denotes w,, = 27/B)(m + 1/2); m = 0,
+1, *2,..., 8 = (kgT)~!, kg is the Boltzmann constant,
T is the temperature. As can be seen, the one-particle
excitations in a mean-field approximation are coherent

combinations of electronlike w (k, q) = Eq(k) + 14(k)
and holelike w_(k,q) = Eq(k) — ng(k) excitations.
The coherent factors u4(k) and v4(k) give the probability

amplitudes of these states in the actual mixture.
Here, Eq(k) = {2(K) + A2 uf = [I[1 + 2,
q
vi = A1 —g"—?lz;], and we have used the following
q

notations:  14(k) = 3[&(k +q) — &(q — K)], xq(k) =
1&g+ k) + £(q — K)].

The thermodynamic potential () at temperature 7 in a
mean-field approximation can be evaluated as a summation
of quasiparticles with energy w-(k, q) [4]. Having ob-
tained the thermodynamic potential in the mean-field ap-
proximation, we set ( to be in the x direction and minimize
the Helmholtz free energy F(A, g, f1. f1) = Q + uify +
wf) with respect to uq, ), A, and g,. As a result, we
obtain the number and gap equations, as well as the equa-
tion for q = (g,, 0):

1=y Sl 00 O + 00— 0 ()

1= S0 (0, @) + 1300~ . (k@)
k
| Us 1S ka) S, (.a)

N4 2E,(k) '
_1 Inq(k) B 3 xq(K)
O—N%{ a"qx [f(w (k,q) f(w,(k,q))]++qx
Xq(k)
X1 e b oG]}

where f(x) = [exp(Bx) + 1]7! is the Fermi distribution
function.

The BS equations for the collective mode w = w4(Q)
and the corresponding BS amplitude ‘i’q(k, Q) can be
derived in a similar manner as in population-balanced
systems [12]. We have used the Hubbard-Stratonovich
transformation which allows us to apply a functional de-
rivative technique. As a result, the following BS equations
have been derived:

; v

Ty Q) = <5 DY Uy, Q) 45 M (b, Q)
p P

The BS amplitude is a 4 X 1 matrix \ifq(k, Q) =
(¥4 (k, Q) ik, Q) Vi'(k, Q) Vg'(k Q)" (T means
transpose of a matrix), and UD and UM represent the
direct and exchange interactions, respectively:
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. is a Bose frequency, and we have introduced the two-particle propagator
J1w,,), where i, j, k, [ =

{.1}. The condition for existing a

nontr1v1al solution of the Bethe- Salpeter equatlons leads to the following secular determinant:

U_l + (Iy,y - Lf/,f/) (Jy,l - Km,f/)

7 = (J% Km,i’) Uil + (Il,l - Lm,m)
(L5 + L) Uiy + Kny)
(Jym + Kl 5/) (Il,m + Ll,m)

where the following symbols are used:

(I%y + L%y) (J%m + Kl,«;)

(i]l,f/ + Km,y) (Il,m + Ll,m) (1)
_U + (I.y’.;, - L‘}/,‘}/) _EJ,;,’m - K‘}/,l)

(J)Zm - Ky,l) U + (Im,m - Ll,l)

I [1 flo_(k,q)— flo,(k+Q,q)) 1—f(w+(k,q))—f(w_(k+Q,q))]
ab ™ 0+ Q4(k Q) — g4(k,Q)] 0+ Q4K Q)+ g4(k, Q)] ’
; Za b [1 flo_(k,q))— flo,(k+Q,q)) 1—f(w+(k,q))—f(w_(k+Q,q))]
ab =N £k Q7kQ 0+ Qy(k, Q) —g4(k,Q)] 0+ Qq(k,Q) + g4(k,Q)] '

flo_(k,q)— flo_(k+Q,q)) f(w+(k q) — fwi(k+Q,q))

Kop= ZNZ“k obk Q[

w+Q4(k, Q)+ €4(k,Q)]

o +Q4(k, Q) — € (k, Q)] ]

Lab ZNZGkQ [f(w_(k,q))_f(w_(k+Q’q))—f(w+(k’q))_f(w+(k“r‘Q’q))

0+ 0K, Q)+ e,(k, Q)]

Here, &4(k,Q)=E(k + Q)+ Ey(k), €,k Q)=
Ey(K + Q) ~ E,(K). " 04(k Q) = (k) ~ 7,(k + Q).
and a and b are one of the following form factors: yk Q=
”E”HQ + Ukvﬁ+ > lﬁQ ”E”HQ UEUH > 7kQ
UV g ~ UkiQUk- Mk Q = UkVkiq T UkiqUk- ASQ—
0 in accordance with the well-known Goldstone theorem,
there exists a solution w — 0. In this case all J, K, and L
vanishes, and the secular equation reduces to the gap
equation written as 0 = 1 + Ul,—; ,—;.

Numerical results.—We have solved numerically the
number, gap, and g equations assuming a two-dimensional
lattice. The total filling factor is f = 0.5, while the inter-
action strength and the temperature are chosen to be
U/J =264 and T =2 X 107 °Ey, respectively. In Fig. 2
we present the results of our calculations of the chemical
potentials u; and w, the gap A and ¢, for different
polarization. The FF states lower the system free energy
compared to the corresponding Sarma states. For example,
in the case when the polarization P = 0.1 (f; = 0.275 and
f1 = 0.225), the Sarma gap and chemical potentials are
A/Eg =0.022, w/Eg=0.219, and u,/Eg = 0.176,
respectively. For the same polarization the solution of
mean-field equations provides the following results
for the FF states: g.a = 0.042277, A/Eg = 0.01765,
w1/Eg = 0.21777, and u,/Eg = 0.18182, and therefore,
the FF free energy is 99.95% of the free energy of the

o+ Qq(k, Q) — €,(k, Q)] ]

corresponding Sarma state. Similarly to the 3D case [4],
the energy gap A decreases and ¢, increases when the
polarization increases.

In Fig. 3, we show the Goldstone mode spectrum along
the (7, 0) direction when f; =0.275 and f| = 0.225,

U/J =264, and T/Er=2X10"° There are two
U=264J,f=05
/By
0.2 — -
0.15 | W /By |
0.1+ —
| xa/n
0.05 | |
1 AE]
0 T ‘ T ‘ T ‘ T ‘ T
0 0.04 0.08 0.12 0.16 0.2
P

FIG. 2. The energy gap A, the magnitude of q, and the chemi-
cal potentials w; and u) as functions of polarization P (solid
lines are guides to the eyes). The total filling factor is f = 0.5.
The temperature is T/Eg = 2 X 1075, All other parameters are
the same as in Fig. 1.
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FIG. 3. The calculated excitation energy in 2D optical lattice
along the (Q,, 0) direction for polarization P = 0.1 (f; = 0.275
and f| = 0.225). The interaction strength and the temperature
are the same as in Fig. 1. (a) The slope of the curve at small
Q determines the velocity of sound ¢ = 10 mm/s. The roton
minima corresponding to a speed of wv,=1mm/s.
(b) ¢ = 13.1 mm/s and v, = 7.5 mm/s.

distinct sound velocities in the long wavelength limit
(13.1 mm/s and 10 mm/s), as shown in Figs. 3(a) and 3
(b). The rotonlike structure is clearly seen, and the mini-
mum requirements on the flow velocities to be able to slow
down (obtained from the two roton slopes) are 7.5 mm/s
and 1 mm/s, respectively. The asymmetry of the sound
mode and the roton minima originates from the fact that the
population imbalance is achieved when either w(k +
Q,q,) or w_(k +Q, g,) is negative in some regions of
momentum space, but the regions are different for positive
and negative Q,. The answer to the question of how this
asymmetry is related to f;, f, and U/J requires analytical
expressions for the two regions. This ambitious task will
be left as a subject of future research.

In summary, we applied the BS approach to the attrac-
tive Hubbard model to calculate the collective-mode spec-
trum of imbalanced Fermi gas in a deep optical lattice.
Assuming a plane wave order parameter, we obtained a
rotonlike spectrum of the Goldstone mode, which means
the superfluidity can survive in polarized systems.
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