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We demonstrate a novel type of stable multicomponent vector solitons consisting of two perpendicular

four-wave mixing (FWM) dipole components induced by electromagnetically induced gratings. We

analyze the formation and steering of the steady dipole solitons and their dynamical (energy transfer)

effects. The dipole-mode solitons of two FWM processes have horizontal and vertical orientations,

respectively. Omnidirectional Bragg reflections are also investigated.
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Spatial solitons can form when the diffraction of a laser
beam is compensated by the self-focusing effect in a Kerr
nonlinear medium [1,2]. If a phase mask is used to intro-
duce a � phase delay for half of the soliton beam, the
soliton can split into two parts with opposite phases be-
tween them, called dipole-mode vector soliton with a
Hermite-Gaussian mode structure [3]. In an optically in-
duced two-dimensional photonic lattice, dipole-mode sol-
itons can be created with either opposite phases or same
phase between the two parts [4]. Vector solitons with one
nodeless fundamental component and another dipole-mode
component can couple to each other and be trapped jointly
in the photonic lattices [3,5]. A radially symmetric vortex
soliton can decay into a radially asymmetric dipole-mode
soliton with a nonzero angular momentum, which can
survive for a very long propagation distance [3]. In the
past few years, studying formation and properties of such
novel spatial solitons has become an active field of research
[1–12]. Much more recently, the spatial gap solitons in
atomic medium were experimentally demonstrated [13].

In this Letter, we show that such charged dipole-mode
solitons can also be created in the four-wave mixing
(FWM) beams generated inside a multilevel atomic me-
dium, in which the self-Kerr and cross-Kerr nonlinearities
are greatly enhanced by laser-induced atomic coherences
[14]. The key to observe such novel dipole-mode solitons
is to create a high enough index contrast (via Kerr non-
linearity n2I) in the atomic medium by laser-induced index
gratings. Two-component dipole-mode solitons are gener-
ated in two coexisting FWM signal beams in a three-level
atomic system. The easy controls of experimental parame-
ters in the multilevel atoms make the current system ideal
to investigate the formations of multicomponent spatial
solitons and their nonlinear dynamics [6–8].

Laser beams are spatially aligned in the configuration as
shown in Fig. 1(a). Energy levels j0i (3S1=2), j1i (3P1=2)

and j2i (4D3=2) in sodium atoms form a cascade three-level

system [Fig. 1(b)]. Two laser fields E1 and E0
1 (with Rabi

frequencies G1 and G0
1, and frequency !1) connecting the

transition j0i to j1i, with an angle �1 � 0:3� between them,
propagate in the opposite direction of a weak probe field E3

(with Rabi frequency G3 and frequency !1). The three
beams are from the same near-transform-limited dye laser
(10 Hz repetition rate, 5 ns pulse-width and 0:04 cm�1

linewidth). They generate an efficient one-photon resonant
FWM signal EF1 satisfying the phase-matching condition
of kF1 ¼ k3 þ k1 � k0

1, which propagates nearly opposite
to the field E0

1, and is sampled by a CCD camera. Two
additional coupling fieldsE2 andE

0
2 (with Rabi frequencies

G2 andG
0
2, and an angle �2 � 0:3� between them) are used

to drive the transition j1i to j2i, which are from another
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FIG. 1. (a) Spatial beam geometry used in the experiment.
(b) Two FWM processes EF1 and EF2, with five beams E1, E

0
1,

E2, E
0
2, and E3 on, in a cascade three-level atomic system. EF1

(TM polarization) in (c) and EF2 (TE polarization) in (d) are
mainly steered by the horizontally and vertically aligned EIG1
and EIG2, respectively.
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similar dye laser with frequency !2. E2, E
0
2, and E3 gen-

erate a two-photon resonant FWM signal EF2 with kF2 ¼
k3 þ k2 � k0

2, propagating nearly opposite to the field E0
2

[Fig. 1(a)] [15]. The coherence lengths for EF1 and EF2

are Lc
F1 ¼ 2c�!1=ðn1!1j!1 �!1j�21Þ ! 1 and Lc

F2 ¼
2c�!1=ðn1!2j!2 �!1j�22Þ � 0:6 m, respectively, where
n1 is the linear refractive index. All incident beams are P
polarized.

Two-component dipole solitons are formed by the bal-
anced interactions between spatial diffractions and cross-
Kerr nonlinearities of the fields E1;2 and E0

1;2. To generate

dipole-mode solitons, the sodium atomic density needs to
reach 2:9� 1013 cm�3 (T ¼ 250�C), which can produce
the needed variation in the nonlinear index of �n ¼
1:94� 10�4 at high enough laser intensities.

Let us consider two electromagnetically induced grat-
ings (EIG) in the atomic medium [16]. EIG can form when
the weak probe beam E3, coupled to one atomic transition,
interacts with two strong noncollinear beams [either
beams E1 and E0

1 in Fig. 1(c), or E2 and E0
2 in

Fig. 1(d)], that is coupled to the same or different atomic
transition in an atomic medium. The beams E1 and E0

1

(or beams E2 and E0
2) induce their own grating EIG1

(or EIG2). Such periodic refractive-index changes create

two photonic band gaps, which prohibit the probe propa-
gation and give rise to the highly efficient omnidirectional
reflections [17]. Thus, the FWM signals (EF1 and EF2) are
the results of the electromagnetically induced diffraction
(EID) of the probe beam E3 by the induced EIG1
and EIG2, respectively. The fringe spacings of EIG1 and
EIG2 are determined by ai ¼ �i=�i (i ¼ 1, 2). The dipole-
like patterns of EF1 and EF2 are created by the horizontally
and vertically aligned EIG1 and EIG2, respectively. One of
the advantages of such spatial solitons is that the wave
guiding effect is induced by focusing due to the cross-Kerr
nonlinearity of the FWM beam, not self-focusing which
normally suffers catastrophic absorption [12].
A radially asymmetric dipole-mode vector soliton in-

cludes one nodeless component (the probe beam E3) and
two dipolelike components with spatial structures of
Hermite-Gaussian modes (HG10 for EF1 and HG01 for
EF2). We mainly study two coupled FWM beams EF1 and
EF2 (with the same frequency), which have perpendicularly
oriented dipole components, propagating along z direction
and diffusing along one transverse direction. We assume
EF1 ¼ AF1ð�Þ expðikF1zÞ, EF2 ¼ AF2ð�Þ expðikF2zÞ, and
Etot ¼ EF1 þ EF2. These two coupled FWM fields satisfy
the evolution equations in the Kerr medium as

@AF1

@z
� ir2

?AF1

2kF1
¼ ikF1

n1
ðnS12 jAF1j2 þ 2nX12 jA1j2 þ 2nX22 jA0

1j2 þ 2nX32 jA0
2j2ÞAF1 þ �1A1ðA0

1Þ�AF2; (1a)

@AF2

@z
� ir2

?AF2

2kF2
¼ ikF2

n1
ðnS22 jAF2j2 þ 2nX42 jA2j2 þ 2nX52 jA0

2j2 þ 2nX62 jA0
1j2ÞAF2 þ �2A2ðA0

2Þ�AF1: (1b)

Two-component dipole-mode solitons are natural results
from such energy-dependent nonlinear propagation equa-

tions. nS1;S22 are self-Kerr nonlinear coefficients of EF1 and

EF2, and nX1�X6
2 are cross-Kerr nonlinear coefficients of

E1;2 and E0
1;2 to EF1 and EF2, respectively. The Kerr non-

linear coefficient is defined as n2 ¼ Re�ð3Þ=ð"0cn1Þ.
The dressed third-order nonlinear susceptibility is �ð3Þ ¼
D�ð3Þ

10 , where D ¼ N�4
10=ð@3"0GF1;F2G

2
i Þ (GF1;F2 are Rabi

frequencies of EF1;F2, respectively), and spatially modu-

lated density-matrix element �ð3Þ
10 / 1=

Q
3
i¼1½ai þ

G2
jcos

2ðk2�Þ� (� ¼ x, y). N is the atomic density and �ij

is the dipole-matrix element between ji> and jj > .
By solving the density-matrix equations of the cascade
three-level atomic system, detail expressions of all the
self- and cross-Kerr nonlinear indices can be obtained.
�1 ¼ 	�5

10Fa and �2 ¼ 	�5
21Fb with 	 ¼ i4�!1N=ch4,

where Fa and Fb relate to the Rabi frequencies of the
involved fields, the frequency detuning �1 (�2) for
E1;3;F1;F2 and E0

1 (E2 and E0
2), and the relaxation rates of

the system [14].
The resulting superposition of the two perpendicular

dipole-soliton components, EF1 and EF2, is a generalization

from a two-component dipole-mode soliton (E3, EF) to a
three-component one (E3, EF1, EF2). The total intensity
(I ¼ jE3j2 þ jEF1j2 þ jEF2j2) is quasistable in propagation
after a long enough propagation distance (or high enough
atomic density). The three components of the vector soli-
ton carry topological charges 0, þ1, �1, respectively,
and the total angular momentum is zero (mF1 þmF2 þ
m3 ¼ 0), which makes the solution stable [7], where
m3;F1;F2 are topological charges of E3;F1;F2.

The in-phase dipole modes of EF1 and EF2 are created
(or split) by the horizontally- and vertically-aligned EIG1
and EIG2, respectively. Thus, the two-component
dipole-mode soliton solutions of EF1 and EF2 can be

written as EF1 ¼ u1 sech½u1ðkF1nS12 =n0Þ1=2ðr� r1Þ��
cosðM’=2Þ expðimF1’þ i
1Þ expðikF1zÞ and EF2 ¼
u2 sech½u2ðkF2nS22 =n0Þ1=2ðr� r2Þ�cosðM’=2ÞexpðimF2’þ
i
2ÞexpðikF2zÞ, where u1;2 are soliton amplitudes; r1;2
are initial peak positions; M is the number of intensity

peaks; 
1;2 are nonlinear phase shifts (
1;2 ¼
2k1;2n2I2;1e

�r2=2z=n1). Such solutions possess the dipole-

soliton characteristics, and two humps form the two poles
of the dipole soliton, which are trapped jointly in the
neighbor photonic fringes.
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The generated FWM (EF2) beam can be significantly
influenced by the dressing beamsG0

1,G1, orG
0
1 &G1 in the

cascade three-level system (Fig. 2). We present the vertical
dipole-mode solitons of EF2 with different dressing con-
figurations. The EF2 beam splits into two coherent spots
(i.e., dipole pattern, as shown in Fig. 2) due to the modu-
lated transverse nonlinear phase shift 
2 induced by the
vertically-aligned EIG2. At low nonlinear dispersion jn2j,
EF2 beam only experiences the linear diffraction. With
maximum jn2j at j�1j ¼ 16:5 GHz [Fig. 2(b)], vertically
oriented dipole soliton is generated due to the balanced
interaction between the spatial diffraction and the cross-
Kerr nonlinearity. At resonance or large frequency detun-
ings, the dipole-mode soliton of EF2 decays into a nodeless
fundamental one. Under the case of enhanced FWM due to
dressing (satisfying �1 þ �2 ¼ jG1 þG0

1j2=�2 [15]) in
Fig. 2(a), EF2 with both G0

1 and G1 dressing is stronger
than withG0

1 orG1 dressing separately, or without dressing
fields. For stronger G0

1, the dressing effect of G0
1 is larger

than that of G1. In the enhancement case with �1 ¼
16:5 GHz, the nonlinear refractive index is n2 ¼
�9� 10�7 cm2=W for EF2, which is much larger than
n2 ¼ �2� 10�8 cm2=W in the suppressed case with
�1 ¼ 4:5 GHz (satisfying �1 þ�2 � 0). The cross-Kerr
nonlinearity in the enhancement case can well compensate
the diffraction in the propagation, while it is too weak to
balance the diffraction without the enhancement.

When five laser beams are turned on at the same time in
the cascade three-level system, the probe beam forms a
fundamental nodeless soliton and propagates with a stable
shape for different atomic densities (equivalent to different
propagation distances), as shown in Fig. 3(a). The effective
propagation distance of such soliton is 10.8 times longer
than the diffraction length (LD ¼ k1d

2 � 0:96 cm with a
beam diameter of d � 30 �m) [12]. However, the beam
shapes of EF1 and EF2 become quite different at different
propagation distances showing rich dynamical behaviors.
The probe, EF1 and EF2 beams have the same wavelength.
EF1 beam has the dipole component with the horizontal
orientation (mF1 ¼ �1) while EF2 beam gives the vertical
dipole component (mF2 ¼ þ1), which are induced by the
horizontally and vertically aligned EIG1 and EIG2, respec-
tively. During the propagation of EF1 (or EF2) beam, energy
flows back and forth between the two spots, so the dipole
solitons of EF1 and EF2 survive with a strong oscillation (or
breathing) in propagation. The superposition of these
modes shows intriguing dynamics, associated with a rota-
tional instability in EF1 þ EF2 [7]. The fundamental probe
soliton is stable, which has a stronger contribution to the
total superposition mode. Moreover, when the propagation
distance increases gradually, one can see energy transfers
among the probe, EF1 and EF2 beams, as shown in the right
panel of Fig. 3(a). The total intensity of the probe, EF1 and
EF2 reaches a steady state after a long interaction distance
(i.e., no energy exchange afterward).
For certain frequency detunings, the energy of the dipole

soliton can be trapped in one part or another. With �1

FIG. 2 (color online). Images at different �1 (i)–(iv) and beam
profiles at �1 ¼ 16:5 GHz (a) of dipole-soliton EF2 in the
cascade three-level system with G0

2 ¼ G2 ¼ 20 GHz, G0
1 ¼

55 GHz and G1 ¼ 45 GHz ((i) and squares), G0
1 ¼ 55 GHz

and G1 ¼ 0 [(ii) and circles], G0
1 ¼ 0 and G1 ¼ 45 GHz [(iii)

and triangles], and without dressing fields [(iv) and diamonds].
(b) Nonlinear refractive index n2 of EF2 with G0

1 and G1 dress-

ings [15].

FIG. 3 (color online). (a) Experimental (left) and numerical
(middle) results of three-component dipole solitons of the probe,
EF1 and EF2 beams with z ¼ 0, 42, 104 in the cascade three-level
system at �1 ¼ �15 GHz, �2 ¼ �4:5 GHz. Intensity changes
(right panel) of the dipole-soliton components during propaga-
tion for the probe (squares), EF1 (circles), EF2 (triangles), EF1 þ
EF2 (reverse triangles), and total (diamonds) fields. (b) Breathing
effects of EF1 (lower) and EF2 (upper) versus �1. The top panel
gives the numerical results.
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changes from �26 GHz to �10 GHz in the self-focusing
regime, energy flows from the left spot of EF1 (or upper
spot of EF2) to the right (or lower) spot. Symmetric behav-
iors appear in the positive frequency detuning (self-
defocusing) side [Fig. 3(b)]. Since the phase 
 in the
current dipole solution has values 0<
<� (the out-of-
phase repelling dipole soliton is more stable than the in-
phase attracting one) [4,5], the energy exchange occurs
periodically.

The spatially modulated total linear and nonlinear
refractive index is given by nð�Þ ¼ n0 þ �n1 cosð2k2�Þ þ
�n2 cosð4k2�Þ, where n0 is the spatially uniform refractive
index; �n1 and �n2 are the coefficients for spatially varying
terms for the modulated index. The width of the band gap
is given by �gap ¼ 2!0ð�n1 þ �n2Þ=�n0, where !0 is

the center frequency of the forbidden band. Moreover,
by coupled mode techniques with Bloch’s theorem,
we can get k� ¼ ki � ðfk2p½1 þ �1 þ ð�2

2 � �2
3Þ�0

2�
�k2i g2 � k4p½�2�3�

0
2 þ ð�2

2 þ 2�2�3Þ�0
3�2Þ1=2=2ki (with

kp¼k3cos�), and obtain the dispersion curves of

Reðk�ai=�� 1Þ versus �1 (i ¼ 1, 2 are for EF1 and EF2,
respectively), as shown in Fig. 4(a). Here, k� are the Bloch
wave-vectors near the Brillouin zone edge, and �m & �0

m

(m ¼ 1, 2, 3) are the susceptibility components. Also, with
increasing incident angle � of the probe beam E3 from
89.85� to 90�, as shown in Figs. 1(c) and 1(d), there exist
a series of forbidden bands (the region with Reðk�ai=
�� 1Þ � 0 in Fig. 4(a), with right side for the TE-polarized
EF2 cases and left side for the TM-polarized EF1 cases,
respectively) for such induced periodic medium, which
result from the strong omnidirectional Bragg reflections
[17]. It is obvious that the dipole-mode EF1 and EF2 soliton
beams become weaker (as the stop bands start to disappear
from 89.95� to 90� for the incident angle). When the band
gap completely disappears at 89.975� (with no zero values
for the real dispersion, as shown in the far right and far left

dispersion curves), the residual intensity comes from the
FWM signal without the Bragg reflection. In Fig. 4(b),
when the angle �2 between the beams E2 and E

0
2 decreases,

the number of spots for the EF2 beam changes from eight
into two (dipole-mode). The energy has been transferred
from those eight spots (at �2 ¼ 0:5�) to the dipole-mode
spots (at �2 ¼ 0:2�). Such dipole soliton is trapped jointly
in the neighboring photonic fringes. Since a2 ¼ �2=�2, the
fringe spacing of EIG2 will become larger versus decreas-
ing �2.
In conclusion, we have experimentally demonstrated

controllable dipole-mode solitons for generated FWM
beams in the three-level cascade atomic system. This study
exploits new ways in controlling the diffraction and propa-
gation of optical beams, and in designing new devices for
spatial optical switching and logic gating in optical com-
munication and all-optical signal processing.
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