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Correct Description of the Bond Dissociation Limit without Breaking Spin Symmetry
by a Random-Phase-Approximation Correlation Functional
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A correlation functional that is termed exact-exchange random phase approximation (EXX-RPA)
functional and is obtained with the exact frequency-dependent exchange kernel via the fluctuation-
dissipation theorem is shown to correctly describe electron pair bonds in the dissociation limit without the

need to resort to symmetry breaking in spin space. Because the functional also yields more accurate

electronic energies for molecules in their equilibrium geometry than standard correlation functionals, it
combines accuracy at equilibrium bond distances and in dissociation processes with a correct description
of spin, something all commonly employed correlation functionals fail to do. The reason why the EXX-
RPA correlation functional yields distinctively and qualitatively better results than RPA approaches based
on Hartree-Fock and time-dependent Hartree-Fock is explained.
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Despite their ubiquitous application, present density-
functional methods or more precisely Kohn-Sham (KS)
methods, i.e., methods based on density functionals in
the generalized gradient approximation or hybrid methods
like the B3LYP method, suffer from severe shortcomings.
The most serious problem of present KS methods, besides
their inability to treat van der Waals interactions, is
that they cannot correctly treat bond dissociation in mole-
cules. The prototype dissociation of a chemical bond
is the dissociation of the H, molecule. Standard nonspin-
polarized KS calculations, as well as nonspin-polarized
Hartree-Fock calculations, do yield qualitatively wrong
electronic energies for larger bond distances and, in the
limit of infinite distances, do not yield an electronic energy
equal to twice the energy of an isolated hydrogen atom.
By resorting to spin-polarized calculations, a qualitatively
correct electronic energy is obtained at large distances
which leads to a qualitatively correct potential energy
curve, however, at the price of a qualitatively wrong
spin-density. From a certain bond length on, termed the
Coulson-Fisher point, alpha and beta electron densities in a
spin-polarized calculation no longer are equal as they
should be for an electronic state which, at all bond dis-
tances, is a singulet.

The problem occurs generally when dissociating elec-
tron pair bonds. Therefore, a lot of work has been attributed
to it [1-8], with the goal to devise a KS approach that is
generally applicable, performs well at equilibrium bond
distances, and at the same time describes qualitatively
correct bond breaking. We here show that a recent corre-
lation functional [9] obtained within the framework of the
random phase approximation (RPA) with the frequency-
dependent exact-exchange (EXX) kernel [10] of time-
dependent density-functional theory (TDDFT) leads to a
correct dissociation of the H, molecule as well as other
molecules.
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RPA correlation functionals have attracted considerable
interest in recent years [3,4,9,11-18]. The EXX-RPA cor-
relation functional considered here is unique because it not
only describes the dissociation limit correctly but also
leads to electronic energies of molecules at equilibrium
distances and to reaction energies that are more accurate
than those from standard generalized gradient approxima-
tion or hybrid DFT methods [9] and because it enables a
description of van der Waals interactions. Moreover, the
basic EXX-RPA correlation functional can easily be modi-
fied and further developed; see below. Therefore, this
EXX-RPA functional seems to be a highly promising
starting point for a new family of functionals.

As usual in KS methods, an EXX-RPA calculation con-
sists of two steps. (i) The KS orbitals and eigenvalues are
calculated. This is done by an EXX-KS calculation [19]
which means treating exactly the local multiplicative KS
exchange potential, which must not be confused with the
nonlocal HF exchange potential, but neglects the correla-
tion potential. (ii) The electronic energy is calculated. It is
the sum of the EXX energy plus the correlation energy
from the EXX-RPA correlation functional obtained with
the EXX kernel. One can easily imagine modifications of
this approach by including a correlation potential in step (i)
or a correlation contribution to the EXX kernel in step (ii).
Here we concentrate on the basic EXX-RPA correlation
functional.

An important, however, unexplained finding in Ref. [9]
is that for the molecules considered in that work (mole-
cules in their equilibrium geometry) the results from the
EXX-RPA approach are distinctively better than those
from an RPA method based on HF and time-dependent
HF (TDHF), which shall be denoted as HF-RPA here. The
EXX-KS and the HF determinants and thus the EXX and
the HF electronic energies are known to be very close to
each other [20]. Moreover, the excitation energies from a
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TDDEFT calculation with the EXX kernel, i.e., a TDEXX
calculation, and a TDHF calculation are known to be very
similar [21,22]. Therefore, one might also assume that the
RPA correlation energies and the resulting complete elec-
tronic energies are close. This, however, was found in
Ref. [9] not to be the case. Here we make the same finding
in the case of H, dissociation [see Fig. 1], which is even
more striking. Because H, is a two-electron system, the
occupied EXX and HF orbital and thus the EXX and HF
electronic energies are exactly identical. Moreover the
TDEXX and the TDHF excitations energies are exactly
identical. Nevertheless, the HF-RPA approach leads to a
potential energy curve of H, that differs strongly from the
exact one while the EXX-RPA approach yields a potential
energy curve approaching the correct dissociation energy
at a bond distance of about 20 a.u. This is shown in Fig. 1
which displays EXX and HF potential energy curves,
which are identical, and potential energy curves with the
EXX-RPA and HF-RPA correlation energy included,
which are distinctively different. Note that the orbitals
that enter the EXX-RPA functional are the EXX orbitals
from a restricted Kohn-Sham calculation and not, as in
Ref. [4], orbitals that are recalculated from electron den-
sities of spin-polarized calculations, which approach the
exact electron density for large bond distances. A second
central result of this work is the explanation why EXX-
RPA and HF-RPA results are different.

For a two-electron case like H, the KS exchange poten-
tial is just half of the negative of the Coulomb potential.
Therefore, an EXX calculation for a two-electron system
can easily be carried out without the necessity to invoke
optimized effective potential methods [19,23] as it is usu-
ally required for EXX calculations. Similarly, for a two-
electron system, the sum of the Coulomb and exchange
kernel equals just half the Coulomb kernel and is therefore
frequency-independent. Calculations in this work were
carried out with the program package MOLPRO [24]. For
H, the aug-cc-pVQZ basis set of Ref. [25] was used.

The basis of the RPA correlation functional in
density-functional theory is the fluctuation-dissipation
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FIG. 1. Potential energy curves of the H, molecule.

theorem [11]. It enables us to express the KS correlation
energy according to

—1 1 1 0 )
E.= 5 j(; dafdrdr’ ol [0 do[x,r 1 iv)
- XO(r’ r/’ lw)] (1)

The central quantity required in expression (1) for
the correlation energy is the frequency- and coupling-
strength-dependent response function y,. For a coupling
constant of & = 0, y, is the KS response function which is
known in terms of the KS orbitals and eigenvalues. For all
other values of the coupling strength « the response func-
tion Yy, or its frequency integral, is calculated by TDDFT.
For the EXX-RPA correlation energy the coupling-
strength-dependent TDEXX equation

[e2 + ae'/2(A + B + A)e'/?]z,(a)
=0%a)[1— ae 2A - B+ A)e 2]z, (a). (2)

is solved. Equation (2) is obtained from the TDEXX equa-
tion derived in Refs. [21,22] for the full coupling strength
a = 1 by simply multiplying all terms originating from the
sum of the Coulomb and exchange kernel by the coupling
strength « exploiting the fact that these kernels are linear in
«. The matrices A, B, A, and € with a dimension equal to
the number of occupied times unoccupied KS orbitals
contain the matrix elements A,, ;, = 2(ailjb) — (ablji),
Bia,jb = 2(al|bj) - (aflbl), Aia,jb = 51’j<§0a|i)§L - ﬁxl
¢b> - 5ab<¢i|0§L - ﬁxl(P/)s and Eiajb = 5ia,jh(8i - Sa)
with ¢; and ¢; being occupied KS orbitals with eigenval-
ues ¢; and €;, ¢, and ¢, being unoccupied KS orbitals
with eigenvalues &, and g;, and with integrals of the type
(ailjb) being defined according to [drdr'¢,(r)e;(r)
¢;(r),(r")/|r — r'|. The indices ia and jb are superindi-
ces labeling the columns and rows of the matrices. The
operator Y is a nonlocal exchange operator of the form
of the HF exchange operator but is constructed from
KS orbitals, while v, is the operator corresponding to the
local multiplicative KS exchange potential. The eigenvec-
tors z,(a) and the eigenfrequencies (1, («) of the TDEXX
equation [9] then yield the EXX-RPA correlation energy
according to

1
£ = [ dav.(@ o)
0
with the sum-over-excitations integrand
Vila) = | Sal(@e2Ce' 2, (@)/0, (@) | - THC]

“)
with the matrix C containing the matrix elements C;, ;, =
(ailjb). The coupling strength integration in Eq. (3) is
carried out numerically.

For the HF-RPA correlation energy instead of the
TDEXX Egq. (2) the TDHF equation is solved. The latter
can be written in the form [20,22]
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[€2 + aelff (Aur + Bup)elfr 12,(a)
= Q%(a)[l + aﬁﬁpl/Q(AHF - BHF)E;IE/Z]HZ;?(CV)- &)

The matrices Ayr, Byp, and eyr now are defined with
respect to HF instead of EXX orbitals, indicated by the
subscript HF. If the resulting excitation energies (), («) and
eigenvectors z,(«) are inserted into Egs. (4) and (3) then
the HF-RPA correlation energy results.

If the differences between HF and EXX determinants
that are known to be very small [20] are neglected, then the
occupied as well as the unoccupied EXX and HF orbitals
are related by a unitary transformation. It is then possible to
express the TDHF Eq. (5) in terms of EXX orbitals; for
details see Refs. [20,22],

{e2 + €'2[a(A + B) + Ale!/?)z, ()
= 02(a){1 + e [a(A — B) + Ale" /2" 1z, (a).
(6)

The matrix A arises from the transformation of the diago-
nal matrix eHF containing the differences of HF eigenval-
ues into the sum & + A referring to EXX eigenvalue
differences and EXX orbitals. Therefore the matrix A is
not scaled by the coupling constant « in the TDHF Eq. (6)
in contrast to the TDEXX Eq. (2).

In case of two electron systems, the matrix A contains
only elements A, ;, because there is only one occupied
orbital, ¢;, and these matrix elements are given by A, ;, =
—(ailib) + (ablii) because the nonlocal exchange poten-
tial DY" is constructed exclusively from the one occupied
orbital ¢; and the KS exchange potential is just the nega-
tive of the Coulomb potential of the electron density
of the orbital ¢;. As a result, the terms in the TDEXX
Eq. (2) simplify according to [A + B + A] =2C and
[A — B + A] = 0 and the equation assumes the form

[€2 + 2ae'2Ce'/?]z,(a) = Q%(a)z, (). @)

The TDEXX Eq. (7) for two-electron systems contains a
kernel equal to half the Coulomb kernel. (A direct RPA
equation would contain the full Coulomb kernel.)
Similarly, also Eq. (6), the TDHF equation expressed in
EXX orbitals, simplifies for two-electron systems to

[€2 4+ 2ae'2Ce'2 + (1 — a)e!/?Ae'/?]z,(a)
=02(a)1+ (1 — a)e 2Ae /2] 1z, (a). (8)

For two-electron systems the HF and the EXX determi-
nants are exactly equal. Therefore, Eq. (8) is the exact
TDHF equation for two-electron systems just expressed
in KS orbitals. The crucial point is that the TDEXX Eq. (7)
and the TDHF Eq. (8) are equal only for a coupling
strength of @ = 1. This means for all & # 1 the TDHF
and TDEXX excitation energies €),(a) of two-electron
systems and the corresponding eigenvectors z,(«) differ.
As a consequence the electron-electron contribution V,(a)

in Eq. (4) differs for « # 1 and a # 0. [For a = 0 V_(a)
in any case equals zero.]

In Fig. 2 V() is displayed for EXX-RPA and HF-RPA
for different H, bond distances. Figure 2 shows that the
differences in V.(«) are significant. Such strong differ-
ences in the « dependence of V.(a) not only occur for
H, but are present in general; see, e.g., V.(a) curves for the
water molecule in the supporting information. The differ-
ences between the TDEXX Egs. (2) and (7) and the TDHF
equation expressed in EXX orbitals, Egs. (6) and (8), that
are responsible for most (all, in the H, case) of the differ-
ences between EXX-RPA and HF-RPA arise from the fact
that the matrix A resulting from the transformation of HF
to EXX eigenvalue differences is not scaled by the cou-
pling constant in the HF-RPA case. This leads to terms
(I — @)A in the TDHF equations not present in the
TDEXX equations.

The differences between HF-RPA and EXX-RPA can
also be rationalized as follows. The RPA correlation energy
according to Eq. (1) depends on the response function y,,
at all values 0 = a = 1. At @ =1 TDHF and TDEXX
excitation energies (), and the associated eigenvalues
z,, are quite similar (identical for H,) and, therefore, the
corresponding response functions y,—; are quite similar.
However, at « = 0 the response function is given by a
sum-over-states expression containing occupied and
unoccupied orbitals and differences of the orbital eigen-
values. The unoccupied HF and EXX orbitals and their
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FIG. 2. Coupling strength integrand [Eq. (4)] for HF-RPA

(top panel) and EXX-RPA (bottom panel) plotted for several
H-H bond distances.
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eigenvalues differ strongly and as a result the response
function y, is also strongly different at &« = 0. Indeed,
in most cases, unoccupied HF orbitals have positive eigen-
values and individually have little physical meaning in
contrast to EXX orbitals and their eigenvalues. Because
the response function changes continuously along the adia-
batic connection, i.e., along «, the response functions are
strongly different for all values of « that are not close to 1.
The resulting better performance of EXX-RPA compared
to HF-EXX correlation functionals, in this sense, to some
extent is a consequence of the physically more meaningful
EXX orbital and eigenvalue spectrum.

Figure 2 shows that for increasing H, bond distance the
electron-electron contribution V,. to the correlation energy
as a function V,.(a) of the coupling constant a jumps
immediately next to & = 0 from zero to a lower energy
that equals the static correlation energy given by the in-
tegral —(ialia) with i referring to the occupied and a
referring to the lowest unoccupied orbital. This static cor-
relation contribution exclusively arises from the contribu-
tion of the energetically lowest excitation (excitation from
bonding to the antibonding linear combination of 1s orbi-
tals) to the total EXX-RPA correlation energy of Eqgs. (4)
and (3); see supplementary material for details [26]. The
jump of V. is in agreement with the finding of Ref. [8]
where the exact V.(a) was determined for small systems
using a full configuration interaction method. The exact
curve for V.(a) of Ref. [8] jumps to a horizontal line which
shows that the static correlation energy is independent of
the coupling constant. The fact that the EXX-RPA V_(«)
curve after the jump shows a slight slope can be attributed
to dynamic correlation which arises from the contributions
of other excitations to the correlation energy. This dynamic
correlation corrects contributions to the EXX energy aris-
ing because the EXX orbitals are not linear combinations
of the exact atomic hydrogen 1s orbitals (see supplemen-
tary material for details [26]).

For H, bond distances around 6 a.u., a hump occurs
in the EXX-RPA potential energy curve; see Fig. 1. The
reason is that for this distance V.(«) does not yet jump
to the full static correlation energy [see Fig. 2] and, there-
fore, the EXX-RPA correlation functional does not yet
yield the full static correlation energy —(ialia) of
—0.178 a.u. but only —0.108 a.u., which is the contribu-
tion from the energetically lowest excitation energy to
V.(a@); see supplementary material for details [26].

The EXX-RPA method not only describes the dissocia-
tion limit of H, correctly, but of molecular bonds in
general. Results for molecules like N,, CO, or HF will be
presented elsewhere. The EXX-RPA functional, therefore,

is a general purpose functional that seems to be superior to
commonly employed correlation functionals.
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