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We point out that SOð2NcÞ gauge theory with Nf fundamental Dirac fermions does not have a sign

problem at finite baryon number chemical potential �B. One can thus use lattice Monte Carlo simulations

to study this theory at finite density. The absence of a sign problem in the SOð2NcÞ theory is particularly

interesting because a wide class of observables in the SOð2NcÞ theory coincide with observables in QCD

in the large Nc limit, as we show using the technique of large Nc orbifold equivalence. We argue that

the orbifold equivalence between the two theories continues to hold at finite �B provided one adds

appropriate deformation terms to the SOð2NcÞ theory. This opens up the prospect of learning about QCD

at finite �B using lattice studies of the SOð2NcÞ theory.
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The properties of QCD at high baryon densities have
long been a subject of intense interest. Apart from its
intrinsic theoretical appeal, this subject is important in
astrophysics, especially in the study of neutron stars.
Because of asymptotic freedom, the behavior of QCD at
asymptotically high chemical potential for baryon number
�B is well understood theoretically, and QCD becomes a
color superconductor as �B ! 1 [1]. At more phenom-
enologically realistic densities, QCD is strongly coupled,
and thus not amenable to controlled analytic treatment.
Lattice Monte Carlo simulation is very useful at �B ¼ 0.
However, it runs into trouble at �B � 0 due to the fermion
sign problem: the fermion determinant becomes complex,
rendering importance sampling exponentially difficult.

Over the years, several gauge theories that do not suffer
from sign problems at finite density have been explored.
The main examples are QCD with an isospin chemical
potential [2], two-color QCD [3,4], and adjoint QCD
[4–6]. However, while interesting, these theories have
many qualitative differences from Nc ¼ 3 QCD, such as,
e.g., explicitly broken flavor symmetry in the first case.

Here, we propose a path to study QCD at �B � 0 in
the large Nc limit using lattice Monte Carlo methods.
Large Nc QCD [7] gives many insights into nonperturba-
tive strong interactions at zero �B: it is often a good
approximation to our Nc ¼ 3 world. The extent to which
the finite-density large Nc world is a good approximation
to the Nc ¼ 3world is discussed in, for instance, Refs. [8].

Our proposal rests on two observations. The first is that
all representations of SOð2NcÞ are real, and as a result
SOð2NcÞ gauge theory with Nf fundamental Dirac fermi-

ons does not have a sign problem at �B � 0. This alone
already makes the theory worth studying, especially be-
cause the SOð2NcÞ theory shares a number of qualitative
features with Nc � 3 QCD. For example, it has 2Nc-
valence-quark baryons [9].

Our second observation is that the connection between
the SOð2NcÞ theory and SUðNcÞ QCD is in fact quantita-
tive. We show that SUðNcÞ gauge theory with Nf funda-

mental Dirac fermions (i.e., largeNc QCD) can be obtained
as an orbifold projection of the SOð2NcÞ theory. Large
Nc orbifold equivalence [10–12] then guarantees that all
correlation functions of operators in the ‘‘neutral’’ sector
(i.e., invariant under the symmetry used for the projection)
coincide in both theories to leading order in the 1=Nc

expansion, provided the symmetries used in the projection
are not spontaneously broken. The necessary symmetries
are unbroken at �B ¼ 0, and thus the SOð2NcÞ theory and
large Nc QCD have coinciding correlation functions for a
broad class of operators. The equivalence should continue
to hold at �B � 0, provided one adds certain deformation
terms to the SOð2NcÞ theory which protect the orbifold
symmetry, but do not otherwise affect the connection
of the theory to large Nc QCD. We show that there exist
deformations that protect the orbifold symmetry at least for
�B � �QCD, and likely for larger �B as well, all while

keeping the theory sign problem free in the chiral limit.
The existence of a sign-problem-free theory equivalent
to finite-density large Nc QCD is unexpected and quite
remarkable.
The orbifold equivalence between the two theories

at �B ¼ 0 can be checked using lattice simulations, as
can the question of whether the necessary symmetries are
protected at large �B. If the proposal passes these checks,
the SOð2NcÞ gauge theory may be used to perform non-
perturbative studies of large Nc QCD at finite density.
SOð2NcÞ gauge theory.—The SOð2NcÞ 4D gauge theory

with Nf flavors of Dirac fermions (in Euclidean signature)

is

LSO¼ 1

4g2SO
TrF2

��þ
XNf

a¼1

�qað��D�þmqþ�B�
4Þqa; (1)
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where F�� is the SOð2NcÞ field strength,D� ¼ @� þ iA�,

qa is a Dirac fermion in the fundamental representation of
SOð2NcÞ, and mq and �B are the quark mass and chemical

potential. A� ¼ Ai
�ti, where the ti are the generators of

SOð2NcÞ; we take Trtitj ¼ �ij.

When mq ¼ �B ¼ 0, Eq. (1) has an SUðNfÞL �
SUðNfÞR �Uð1ÞB �Uð1ÞA chiral symmetry at the classi-

cal level, just like SUðNcÞ QCD. However, the chiral
symmetry of the theory is actually larger than this, since
SOð2NcÞ is a real gauge group; classically it extends
to Uð2NfÞ [13]. Uð1ÞA � Uð2NfÞ is anomalous as usual

at finite Nc. The chiral condensate �qq breaks to
SOð2NfÞ � SUðNfÞV . The resulting Nambu-Goldstone

bosons (NGBs), with mass m� � ffiffiffiffiffiffiffi
mq

p
, live on SUð2NfÞ=

SOð2NfÞ. Some of the NGBs, the ‘‘pions,’’ are pseudosca-

lars that couple to �qa�5qb, while the others, which we will
refer to as baryonic pions, are charged under Uð1ÞB. The
baryonic pions are parity even [14] and couple to color-

singlet operators of the form Sab and Syab, where Sab ¼
qTaC�

5qb and C ¼ �4�2 is the charge conjugation matrix
satisfying C��C

�1 ¼ ���
� (we take �y

� ¼ ��).

There are NfðNf þ 1Þ baryonic pions in the theory, and

N2
f � 1 pions with no baryon number. The SOð2NcÞ theory

also contains baryon-number-charged cousins of other
mesons normally encountered in QCD.

Now consider turning on �B � 0. Since in the chiral
limit the baryonic pions are the lightest particles charged
under Uð1ÞB, once �B � m�=2, one would expect the
system to undergo a second-order phase transition to a
phase with a nonzero density of baryonic pions. In fact,
on general grounds, one expects that the baryonic pions
will Bose condense. In other theories with ‘‘baryonic
pions,’’ namely, 2-color QCD and adjoint QCD, explicit
chiral perturbation theory (�PT) calculations show that
this does indeed happen [4]. We expect the same in the
SOð2NcÞ theory [14]. The baryonic pion condensate breaks
Uð1ÞB ! Z2. The breaking of Uð1ÞB at �B � m�=2 in the
SOð2NcÞ gauge theory is in sharp contrast to the way
SUðNcÞ QCD behaves, where there are no baryonic pions
to be condensed. We return to this crucial point below, in
the context of orbifold projections.

Orbifold projection to SUðNcÞ—To perform an orbifold
projection, one identifies a discrete subgroup of the sym-
metry group of the ‘‘parent’’ theory, which for us is the
SOð2NcÞ theory, and sets to zero all of the degrees of
freedom in the parent theory that are not invariant under
the discrete symmetry. This gives a ‘‘daughter’’ theory,
which in this case turns out to be large Nc QCD. The
orbifold projection uses a Z2 subgroup of the SOð2NcÞ �
Uð1ÞB symmetry of the SOð2NcÞ theory.

To define the orbifold projection, take J 2 SOð2NcÞ
to be given by J ¼ i�2 	 1Nc

; 1N is an N � N identity

matrix. [For earlier work on projections from SOð2NcÞ
to SUðNcÞ, see [15].] J generates a Z4 subgroup of

SOð2NcÞ. Next, let ! ¼ ei�=2 2 Uð1ÞB generate a Z4

subgroup of Uð1ÞB. The action of J and ! on A�,

qa is

A� ! JA�J
T; qa ! �!Jqa; (2)

generating a Z2 subgroup of SOð2NcÞ �Uð1ÞB.
A� can be written in Nc � Nc blocks as

A� ¼ i
AA
� þ BA

� CA
� �DS

�

CA
� þDS

� AA
� � BA

�

 !
; (3)

where fields with an ‘‘A’’ (‘‘S’’) superscript are antisym-
metric (symmetric) matrices. Under the Z2 symmetry,
AA
�, D

S
� are even while BA

�, C
A
� are odd, so the orbifold

projection sets BA
� ¼ CA

� ¼ 0. So

A
proj
� ¼ i

AA
� �DS

�

DS
� AA

�

 !
: (4)

If one defines a unitary matrix

P ¼ 1ffiffiffi
2

p 1Nc
i1Nc

1Nc
�i1Nc

� �
; (5)

then

PA
proj
� P�1 ¼ �AT

� 0
0 A�

 !
; (6)

whereA� 
 DS
� þ iAA

� is a UðNcÞ gauge field. However,
the difference between UðNcÞ and SUðNcÞ is a 1=N2

c

correction. The gauge part of the action of the orbifold-
projected parent theory is thus simply

L gauge;proj ¼ 2

4g2SO
TrF ��F ��; (7)

where F �� is the SUðNcÞ field strength.

Now consider the effect of the orbifold on qa. Writing
ð�þ

a ; �
�
a ÞT ¼ ðPqaÞT , the action of the Z2 symmetry is

just ð�þ
a ; �

�
a ÞT ! ð��þ

a ; �
�
a ÞT . The projection consists of

setting �þ
a ¼ 0.

The action of the daughter theory is the action of the
parent theory after the projection, with a rescaled coupling
constant gSU ¼ gSO [10]

L ¼ 1

4g2SU
TrF 2

�� þ
XNf

a¼1

�c að��D� þmq þ�B�
4Þc a;

(8)

where F �� is the field strength of the SUðNcÞ gauge field
A� ¼ DS

� þ iAA
�, c a ¼ ��

a , andD� ¼ @� þ iA�. This

is an SUðNcÞ gauge theory with Nf flavors of fundamental

Dirac fermions. So the orbifold projection relates SOð2NcÞ
gauge theory to large Nc QCD.
Neutral sector.—The claim of orbifold equivalence

is that the connected correlators of neutral operators in
orbifold-equivalent parent and daughter theories will agree
at large Nc. We define neutral operators to be those that
are invariant under the projection symmetry. Color-singlet
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gluonic operators in the SOð2NcÞ theory are neutral, and
are mapped to C-even gluonic operators in SUðNcÞ theory
by the projection.

For fermionic observables, things are more subtle. Some
examples of fermion bilinears that survive the projection
are given in Table I. An example of a bilinear that does not
survive the projection is qTaC�

5qb, the baryonic pion op-
erator; the same is true for all of the baryonic mesons. This
is because all such operators have charge �1 under the Z2

projection symmetry. Thus correlation functions involving
baryonic mesons have no counterparts in large Nc QCD.
Note that this implies that the counting of neutral NG
bosons matches in the two theories [11], which is an
important sanity check on the large Nc equivalence.

Validity of the equivalence.—Given an orbifold projec-
tion between two theories, the correlation functions of
neutral operators will agree in perturbation theory [10].
For an orbifold equivalence to hold nonperturbatively, the
symmetries used in the projection must not be spontane-
ously broken [11]. While the proofs of Refs. [11] need be
generalized to apply to projections involving fundamental
fermions [14,16], it is natural to conjecture that the sym-
metry realization condition remains the key to the non-
perturbative validity of the equivalence.

In our case, Uð1ÞB ! Z2 when �B � m�=2 due to
baryonic pion condensation. This breaks the projection
symmetry, destroying the equivalence. All is not lost,
however. One can add a deformation term to the
SOð2NcÞ theory to prevent baryonic pion condensation
and protect Uð1ÞB. The simplest choice is

L SO ! LSO þ c2

�2

X
a;b

SyabSab; (9)

where ���QCD. The deformed theory should be viewed

as an effective field theory, defined with an implicit (lat-
tice) cutoff, since the deformation is an irrelevant operator.
Large Nc factorization implies that the deformed system
would pay an energy cost Oðc2Þ for the formation of
a baryonic pion condensate. Thus provided c is large
enough, the deformation prevents baryonic pion condensa-
tion, saving the validity of the orbifold equivalence be-
tween the deformed SOð2NcÞ gauge theory and large
Nc QCD.

By construction, deformation terms do not survive the
orbifold projection to QCD, so the value of c does not
affect the correlation functions of neutral operators so
long as the equivalence holds. Much like the double-
trace deformations used to prevent [18] center-symmetry

breaking in Eguchi-Kawai reduction [19], our deformation
terms hide themselves once they do their job.
The sign problem.—Consider the undeformed SOð2NcÞ

theory. Then the Dirac operator D ¼ 6Dþmq þ�B�4

satisfies C�5DðC�5Þ�1 ¼ D�. If the lattice form of the
Dirac operator also has this symmetry, then if ’ satisfies
D’ ¼ �’, Dð�5C�1’�Þ ¼ ��ð�5C�1’�Þ, and ’,
�5C�1’� are orthogonal [5]. So eigenvalues form pairs
(�, ��), and hence detðDÞ � 0, even at �B � 0.
For simulations of the deformed theory, the action must

be made quadratic in q, which can be arranged by ‘‘inte-
grating in’’ auxiliary fields. For general values of mq, �B,

the C�5DðC�5Þ�1 ¼ D� symmetry of the Dirac operator is
crucial for avoiding the sign problem, but deformations
generically break it. There are a variety of deformations
that prevent baryonic pion condensation, and several
ways of introducing auxiliary fields. A deformation which
turns out to have a simple effect on the deformed theory
[14] and can be implemented without a sign problem in
the chiral limit is

L d ¼ c2

�QCD

ðSyabSab � PyabPabÞ; (10)

where Pab ¼ qTaCqb. Using Fierz identities, this can be
written as

L d¼ c2

�QCD

½ð �qiaqjaÞ2þð �qia�5qjaÞ2þ1

2
ð �qia���qjaÞ2�; (11)

where there is an implied sum over the color labels i; j.
We then introduce real auxiliary fields that couple to the
flavor-singlet bilinears �qi � � � qj. This allows us to maintain

a CDC�1 ¼ �D� symmetry for any c, �B so long as
mq ¼ 0, avoiding the sign problem. While in practical

lattice calculations mq > 0, the lack of a sign problem at

mq ¼ 0 implies that the phase-quenching approximation

must become increasingly accurate as mq ! 0 in this

theory.
The sign-free deformation may seem peculiar, espe-

cially since Ld is not positive definite. However, one can
get a nonperturbative understanding of its effects using
low-energy effective field theory. The result of this analy-
sis, which will be presented elsewhere [14], is very simple:
the deformation raises the mass of the baryonic pions,
pushing their condensation point past �B ¼ m�=2, saving
the equivalence. Once �B ��QCD, baryonic mesons with

masses ��QCD might condense. Whether this happens

depends on which states in the deformed theory have
the smallest mass per Uð1ÞB charge, and will have to
be resolved by lattice simulations. It would be very inter-
esting if the equivalence works through the nuclear matter
transition.
More applications.—The arguments so far also hold at

finite temperature. In particular, the details of the chiral
transition can be studied as long as the baryonic pion does
not condense. So even without the deformation, one can

TABLE I. Examples of fermion bilinears whose correlation
functions match between the two theories at large Nc.

SOð2NcÞ theory SUðNcÞ theory
�qaqb �c ac b

�qa�
�qb �c a�

�c b

�qa�
�@�qb �c a�

�@�c b
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gain valuable insights into hot QCD. Our framework also
gives insights into the behavior of phase-quenched simu-
lations. WhenNf is even, one can do a projection of the SO

theory by using a Z4 subgroup of the Uð1ÞI3 2 SUðNfÞV
‘‘isospin’’ flavor symmetry instead of Uð1ÞB. The daughter
theory is again large Nc QCD, but now �B in the parent is
mapped to an isospin chemical potential �I in QCD. The
resulting daughter-daughter equivalence between QCD
with �B � 0 and �I � 0 holds for �<m�=2. It has
been previously noticed that phase-quenching QCD with
�B <m�=2 seems to be a good approximation for some
observables, and that the phase-quenched theory is just
QCD with �I � 0 [20]. The daughter-daughter equiva-
lence guarantees that at large Nc phase quenching is exact
for observables with zero baryon and isospin charges,
giving additional insights into the behavior of this approxi-
mation [21]. The equivalence can be extended to a holo-
graphic setup [22], and the coincidence of the phase
diagram in the baryonic [23] and isospin [24] theories
can be seen analytically.

Outlook.—We have proposed a way to dodge the sign
problem in the chiral limit of large Nc QCD by working
with a large-Nc equivalent SOð2NcÞ theory. There are
many directions for future work, some of which were
mentioned above. Of these, tests of the proposal on
the lattice and EFT analysis of the IR physics of the
deformed theory are perhaps the most urgent. Finally,
one might wonder if orbifold equivalence can allow one
to dodge sign problems in other systems, for instance in
SYM theories [25]. This would make the Monte Carlo
approach to the gauge-gravity duality (see, e.g., [26])
much more tractable.
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