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We consider a basic model of digital memory where each cell is composed of a reflecting medium with

two possible reflectivities. By fixing the mean number of photons irradiated over each memory cell, we

show that a nonclassical source of light can retrieve more information than any classical source. This

improvement is shown in the regime of few photons and high reflectivities, where the gain of information

can be surprising. As a result, the use of quantum light can have nontrivial applications in the technology

of digital memories, such as optical disks and barcodes.
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In recent years, nonclassical states of radiation have
been exploited to achieve marvellous results in quantum
information and computation [1]. In the language of quan-
tum optics, the bosonic states of the electromagnetic field
are called ‘‘classical’’ when they can be expressed as
probabilistic mixtures of coherent states. Classical states
describe practically all the radiation sources which are
used in today’s technological applications. By contrast, a
bosonic state is called ‘‘nonclassical’’ when its decompo-
sition in coherent states is nonpositive [2,3]. One of the key
properties which makes a state nonclassical is quantum
entanglement. In the bosonic framework, this is usually
present under the form of Einstein-Podolsky-Rosen (EPR)
correlations, meaning that the position and momentum
quadrature operators of two bosonic modes are so corre-
lated as to beat the standard quantum limit [1]. This is a
well-known feature of the two-mode squeezed vacuum
(TMSV) state [1], one of the most important states rou-
tinely produced in today’s quantum optics labs.

In this Letter, we show how the use of nonclassical light
possessing EPR correlations can widely improve the read-
out of information from digital memories. To our knowl-
edge, this is the first study which proves and quantifies the
advantages of using nonclassical light for this fundamental
task, being absolutely nontrivial to identify the physical
conditions that can effectively disclose these advantages
(as an example, see the recent no-go theorems of Ref. [4]
applied to quantum illumination [5]). Our model of digital
memory is simple but can potentially be extended to real-
istic optical disks, like CDs and DVDs, or other kinds of
memories such as barcodes. In fact, we consider a memory
where each cell is composed of a reflecting medium with
two possible reflectivities, r0 and r1, used to store a bit of
information. This memory is irradiated by a source of light
which is able to resolve every single cell. The light focused
on, and reflected from, a single cell is then measured by a
detector, whose outcome provides the value of the bit
stored in that cell. Besides the ‘‘signal’’ modes irradiating
the target cell, we also consider the possible presence of
ancillary ‘‘idler’’ modes which are directly sent to the

detector. The general aim of these modes is to improve
the performance of the output measurement by exploiting
possible correlations with the signals. Adopting this model
and fixing the mean number of photons irradiated over
each memory cell, we show that a nonclassical source of
light with EPR correlations between signals and idlers can
retrieve more information than any classical source of
light. In particular, this is proven for high reflectivities
(typical of optical disks) and few photons irradiated. In
this regime the difference of information can be surprising,
up to 1 bit per cell (corresponding to the extreme situation
where only quantum light can retrieve information). As we
will discuss in the conclusion, the chance of reading infor-
mation using few photons can have remarkable consequen-
ces in the technology of digital memories, e.g., in terms of
data-transfer rates and storage capacities.
Let us consider a digital memory where each cell can

have two possible reflectivities, r0 or r1, encoding the two
values of a logical bit u [see Fig. 1]. Close to the memory,
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FIG. 1. Basic model of memory: Digital information is stored
in a memory whose cells have different reflectivities: r ¼ r0
encoding bit value u ¼ 0, and r ¼ r1 encoding bit value u ¼ 1.
Readout of the memory: In general, a digital reader consists of
transmitter and receiver. The transmitter TðM;L; �Þ is a bipartite
bosonic system, composed by a signal system S (with M modes)
and an idler system I (with L modes), which is given in some
global state �. The signal S emitted by this source has bandwidth
M and energy N (mean number of photons). The signal is
directly shined over the cell, and its reflection R is detected
together with the idler I at the output receiver, where a suitable
measurement retrieves the value of the bit up to an error
probability Perr.
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we have a digital reader, made up of transmitter and
receiver, whose goal is to retrieve the value of the bit stored
in a target cell. In general, we call the ‘‘transmitter’’ a
bipartite bosonic system, composed by a signal system S
with M modes and an idler system I with L modes, and
globally given in some state �. This source can be com-
pletely specified by the notation TðM;L; �Þ. By definition,
we say that the transmitter T is classical (nonclassical)
when the corresponding state � is classical (nonclassical),
i.e., Tc ¼ TðM;L; �cÞ and Tnc ¼ TðM;L; �ncÞ. The signal
S emitted by the transmitter is associated with two basic
parameters: the number of modes M, that we call the
‘‘bandwidth’’ of the signal, and the mean number of
photons N, that we call the ‘‘energy’’ of the signal [6].
The signal S is shined directly on the target cell, and its
reflection R is detected together with the idler I at the
output receiver. Here a suitable measurement yields the
value of the bit up to an error probability Perr. Repeating
the process for each cell of the memory, the reader retrieves
an average of 1�HðPerrÞ bits per cell, where Hð�Þ is the
binary Shannon entropy.

The basic mechanism in our model of digital readout is
quantum channel discrimination. In fact, encoding a logi-
cal bit u 2 f0; 1g in a pair of reflectivities fr0; r1g is equiva-
lent to encoding u in a pair of attenuator channels
fEðr0Þ; Eðr1Þg, with linear losses fr0; r1g acting on the signal
modes. The readout of the bit consists in the statistical
discrimination between r0 and r1, which is formally
equivalent to the channel discrimination between Eðr0Þ
and Eðr1Þ. The error probability affecting the discrimina-
tion Eðr0Þ � Eðr1Þ depends on both transmitter and re-
ceiver. For a fixed transmitter TðM;L; �Þ, the pair
fEðr0Þ; Eðr1Þg generates two possible output states at the
receiver, �0ðTÞ and �1ðTÞ. These are expressed by
�uðTÞ ¼ ½EðruÞ�M � I�L�ð�Þ, where EðruÞ acts on the
signals and the identity I on the idlers. By optimizing
over the output measurements, the minimum error proba-
bility which is achievable by the transmitter T in the
channel discrimination Eðr0Þ � Eðr1Þ is equal to PerrðTÞ ¼
ð1�DÞ=2, where D is the trace distance between �0ðTÞ
and �1ðTÞ. Now the crucial point is the minimization of
PerrðTÞ over the transmitters T. Clearly, this optimization
must be constrained by fixing basic parameters of the
signal. Here we consider the most general situation where
only the signal energy N is fixed. Under this energy con-
straint the optimal transmitter T which minimizes PerrðTÞ
is unknown. For this reason, it is nontrivial to ask the
following question: does a nonclassical transmitter which
outperforms any classical one exist? In other words, given
two reflectivities fr0; r1g, i.e., two attenuator channels
fEðr0Þ; Eðr1Þg, and a fixed value N of the signal energy,
can we find any Tnc such that PerrðTncÞ<PerrðTcÞ for every
Tc? In the following we reply to this basic question,
characterizing the regimes where the answer is positive.
The first step in our derivation is providing a bound which

is valid for every classical transmitter (see Ref. [7] for the
proof).
Theorem 1 (classical discrimination bound).— Let us

consider the discrimination of two reflectivities fr0; r1g
using a classical transmitter Tc which signals N photons.
The corresponding error probability satisfies

PerrðTcÞ � CðN; r0; r1Þ :¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�Nð ffiffiffiffi

r1
p � ffiffiffiffi

r0
p Þ2

q

2
: (1)

According to this theorem, all the classical transmitters Tc

irradiating N photons on a memory with reflectivities
fr0; r1g cannot beat the classical discrimination bound
CðN; r0; r1Þ; i.e., they cannot retrieve more than 1�HðCÞ
bits per cell. Clearly, the next step is constructing a
nonclassical transmitter which can violate this bound.
A possible design is the ‘‘EPR transmitter,’’ composed by
M signals and M idlers, that are entangled pairwise via
two-mode squeezing. This transmitter has the form
Tepr ¼ TðM;M; j�ih�j�MÞ, where j�ih�j is a TMSV state

entangling signal mode s 2 S with idler mode i 2 I.
In the number-ket representation j�i ¼ ðcosh�Þ�1 �P1

n¼0ðtanh�Þnjnisjnii, where the squeezing parameter �
quantifies the signal-idler entanglement. An arbitrary EPR
transmitter, composed by M copies of j�ih�j, irradiates
a signal with bandwidth M and energy N ¼ Msinh2�.
As a result, this transmitter can be completely character-
ized by the basic parameters of the emitted signal; i.e., we
can set Tepr ¼ TM;N . Then, let us consider the discrimina-

tion of two reflectivities fr0; r1g using an EPR transmitter
TM;N which signals N photons. The corresponding error

probability is upper bounded by the quantum Chernoff
bound [8]

PerrðTM;NÞ � QðM;N; r0; r1Þ :¼ 1

2

�
inf

t2ð0;1Þ
Tr
�
�t0�

1�t
1

��M
;

(2)

where �u :¼ ½EðruÞ � I�ðj�ih�jÞ. In other words, at least
1�HðQÞ bits per cell can be retrieved from the memory.
Exploiting Eqs. (1) and (2), our main question simplifies to
finding �M such that Qð �M;N; r0; r1Þ< CðN; r0; r1Þ. In fact,
this implies PerrðT �M;NÞ< CðN; r0; r1Þ, i.e., the existence of
an EPR transmitter T �M;N able to outperform any classical

transmitter Tc. This is the result of the following theorem
(see Ref. [7] for the proof).
Theorem 2 (threshold energy).—For every pair of reflec-

tivities fr0; r1g with r0 � r1, and signal energy

N>Nthðr0; r1Þ :¼ 2 ln2

2� r0 � r1 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� r0Þð1� r1Þ

p ; (3)

there is an �M such that PerrðT �M;NÞ< CðN; r0; r1Þ.
Thus we get the central result of the Letter: for every

memory and above a threshold energy, there is an EPR
transmitter which outperforms any classical transmitter.
Remarkably, the threshold energy Nth turns out to be low
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(< 102) for most of the memories fr0; r1g outside the
region r0 � r1. This means that we can have an enhance-
ment in the regime of few photons (N < 102). Furthermore,
for low energyN, the critical bandwidth �M can be low, too.
In other words, in the regime of few photons, narrow band
EPR transmitters are generally sufficient to overcome
every classical transmitter. To confirm and quantify this
analysis, we introduce the ‘‘minimum information gain’’
GðM;N; r0; r1Þ :¼ 1�HðQÞ � ½1�HðCÞ�. For given
memory fr0; r1g and signal energy N, this quantity lower
bounds the number of bits per cell which are gained by an
EPR transmitter TM;N over any classical transmitter Tc [9].

Numerical investigations [see Fig. 2] show that narrow
band EPR transmitters are able to give G> 0 in the regime
of few photons and high reflectivities, corresponding to
having r0 or r1 sufficiently close to 1 (as typical of optical
disks). In this regime, part of the memories display remark-
able gains (G> 0:5).

Thus the enhancement provided by quantum light can be
dramatic in the regime of few photons and high reflectiv-
ities. To investigate more closely this regime, we consider
the case of ideal memories, defined by r0 < r1 ¼ 1. As an
analytical result, we have the following [7].

Theorem 3 (ideal memory).—For every r0 < r1 ¼ 1 and
N � Nth :¼ 1=2, there is a minimum bandwidth �M such
that PerrðTM;NÞ< CðN; r0; r1Þ for every M> �M.

Thus, for ideal memories and signals above Nth ¼ 1=2
photon, there are infinitely many EPR transmitters able to
outperform every classical transmitter. For these memo-
ries, the threshold energy is so low that the regime of few
photons can be fully explored. The gain G increases with
the bandwidth, so that optimal performances are reached
by broadband EPR transmitters (M ! 1). However,
narrow band EPR transmitters are sufficient to give
remarkable advantages, even forM ¼ 1 (i.e., using a single

TMSV state). This is shown in Fig. 3, whereG is plotted in
terms of r0 and N, considering the two extreme cases
M ¼ 1 and M ! 1. According to Fig. 3, the value of G
can approach 1 for ideal memories and few photons even if
we consider narrow band EPR transmitters.
Presence of decoherence.—Note that the previous analy-

sis does not consider the presence of thermal noise.
Actually this is a good approximation in the optical range,
where the number of thermal background photons is
around 10�26 at about 1 �m and 300 K. However, to
complete the analysis, we now show that the quantum
effect exists even in the presence of stray photons hitting
the upper side of the memory and decoherence within the
reader. The scattering is modeled as white thermal noise
with �n photons per mode entering each memory cell.
Numerically we consider �n ¼ 10�5 corresponding to non-
trivial diffusion. This scenario may occur when the light,
transmitted through the cells, is not readily absorbed by the
drive (e.g., using a bucket detector just above the memory)
but travels for a while diffusing photons which hit neigh-
boring cells. Assuming the presence of one photon per
mode traveling the ‘‘optimistic distance’’ of 1 m and under-
going Rayleigh scattering, we get roughly �n ’ 10�5 [10].
The internal decoherence is modeled as a thermal channel
N ð"Þ adding Gaussian noise of variance " to each signal
and reflected mode, and 2" to the each idler mode (numeri-
cally we consider the nontrivial value " ¼ �n ¼ 10�5).
Now, distinguishing between two reflectivities fr0; r1g
corresponds to discriminating between two Gaussian
channels Su �N ð2"Þ for u 2 f0; 1g. Here Su :¼ N ð"Þ 	
Eðru; �nÞ 	N ð"Þ acts on each signal mode, and contains the
attenuator channel Eðru; �nÞ with conditional loss ru and
thermal noise �n. To solve this scenario we use Theorem 1
with the proviso of generalizing the classical discrimination

bound. In general, we have C ¼ ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FM

p Þ=2, where
F is the fidelity between S0ðj ffiffiffiffiffi

nS
p ih ffiffiffiffiffi

nS
p jÞ and S1ðj ffiffiffiffiffi

nS
p i�

h ffiffiffiffiffi
nS

p jÞ, the two outputs of a single-mode coherent state

j ffiffiffiffiffi
nS

p i with nS :¼ N=M mean photons. Here the expression

for C depends also on the bandwidth M of the classical

r r0

N N

0

FIG. 3. Minimum information gain G versus r0 and N. Left
picture refers to M ¼ 1, right picture to M ! 1. (For arbitrary
M the scenario is intermediate.) Outside the inconclusive black
region we have G> 0. For M ! 1 the black region is com-
pletely collapsed below Nth ¼ 1=2.

FIG. 2. Left panel: Minimum information gain G over the
memory plane fr0; r1g. For a few-photon signal (N ¼ 30), we
compare a narrow band EPR transmitter (M ¼ 30) with all the
classical transmitters. Inside the black region (r0 � r1) our
investigation is inconclusive. Outside the black region, we
have G> 0. Right panel: G plotted over the plane fr0; r1g in
the presence of decoherence (" ¼ �n ¼ 10�5). For a few-photon
signal (N ¼ 30), we compare a narrow band EPR transmitter
(M ¼ 30) with all the classical transmitters TðM;L; �cÞ having
M � M
 ¼ 5� 106.
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transmitter Tc ¼ TðM;L; �cÞ. Since C decreases to zero
for M ! 1, our quantum-classical comparison is now
restricted to classical transmitters TðM;L; �cÞ with M less
than a maximal valueM
 <1. Remarkably we find that, in
the regime of few photons and high reflectivities, narrow
band EPR transmitters are able to outperform all the
classical transmitters up to an extremely large bandwidth
M
. This is confirmed by the numerical results of Fig. 2,
proving the robustness of the quantum effect G> 0 in the
presence of decoherence. Note that we can neglect classical
transmitters with extremely large bandwidths (i.e., with
M>M
) since they are not meaningful for the model. In
fact, in a practical setting, the signal is an optical pulse with
carrier frequency � high enough to completely resolve the
target cell. This pulse has frequency bandwidth w � � and
duration � ’ w�1. Assuming an output detector with re-
sponse time �t & � and ‘‘reading time’’ t > �, the number
of modes which are excited is roughly M ¼ wt. In other
words, the bandwidth of the signal M is the product of
its frequency bandwidth w and the reading time of the
detector t. Now, the limit M ! 1 corresponds to �t ! 0
(infinite detector resolution) or t ! 1 (infinite reading
time). As a result, transmitters with too large an M can be
discarded.

Suboptimal receiver.—The former results are valid
assuming optimal output detection. Here we show an
explicit receiver design which is (i) easy to construct and
(ii) able to approximate the optimal results. This subopti-
mal receiver consists of a continuous variable Bell mea-
surement (i.e., a balanced beam splitter followed by two
homodyne detectors) whose output is classically processed
by a suitable 	2 test with significance level ’ (see Ref. [7]
for details). In this case the information gain G can be
optimized jointly over the signal bandwidth M (i.e., the
number of input TMSV states) and the significance level
of the output test ’. As shown in Fig. 4, the advantages of
quantum reading are fully preserved.

Error correction.—In our basic model of memory we
store 1 bit of information per cell. In an alternative model,

information is stored in block of cells by using error
correcting codes, so that the readout of data is practically
flawless. In this configuration, we show that the error
correction overhead which is needed by EPR transmitters
can be made very small. By contrast, classical transmitters
are useless since they may require more than 100 cells for
retrieving a single bit of information in the regime of few
photons (see Ref. [7] for details).
Conclusion.—Quantum reading is able to work in the

regime of few photons. What does it imply? Using fewer
photons means that we can reduce the reading time of the
cell, thus accessing higher data-transfer rates. This is a
theoretical prediction that can be checked with a pilot
experiment [7]. Alternatively, we can fix the total reading
time of the memory while increasing its storage capacity
[7]. The chance of using few photons leads to another
interesting application: the safe readout of photodegrad-
able memories, such as dye-based optical disks or photo-
sensitive organic microfilms (e.g., containing confidential
information). Here faint quantum light can retrieve the data
safely, whereas classical light could only be destructive.
More fundamentally, our results apply to the binary dis-
crimination of attenuator channels.
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FIG. 4. Left panel:G optimized overM and ’.G can be higher
than 0.6 bit per cell. Results are shown in the absence of
decoherence (" ¼ �n ¼ 0) considering r0 ¼ 0:85, r1 ¼ 1 and
N ¼ 35. Right panel: G optimized over M and ’. Results are
shown in the presence of decoherence ( �n ¼ " ¼ 10�5) consid-
ering r0 ¼ 0:85, r1 ¼ 0:95, N ¼ 100, and M
 ¼ 106.
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