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We demonstrate that non-Abelian rotations within the degenerate ground-state manifold of a set of

Majorana fermions can be realized by the addition or removal of single electrons, and propose an

implementation using Coulomb blockaded quantum dots. The exchange of electrons generates rotations

similar to braiding, though not in real space. Unlike braiding operations, rotations by a continuum of

angles are possible, while still being partially robust against perturbations. The quantum dots can also be

used for readout of the state of the Majorana system via a charge measurement.
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Elementary excitations of topological materials can
have unusual properties, such as statistics different from
that of fermions or bosons. The most interesting possibility
is non-Abelian statistics which is believed to be realized,
for example, in the 5=2 fractional quantumHall system and
in topological superconductors, where the low-energy qua-
siparticles are Majorana fermions [1]. Following Kitaev
[2], recent theoretical achievements have shown that topo-
logical superconductors should be realizable in semicon-
ductor or metallic systems with the right combination of
spin-orbit coupling, induced superconductivity and applied
magnetic field [3–12], which has brought new optimism
into the search. Several methods to observe the non-
Abelian nature of particle exchange have been suggested.
For fractional quantum systems, interferometry of paths
[13,14] and Coulomb blockade peak spacings [15] sensi-
tive to the number of enclosed quasiparticles have been
analyzed, and the former recently investigated experimen-
tally [16]. The nonlocal nature combined with Coulomb
interactions has also been exploited theoretically [17]. For
semiconductor wire systems, exchange of particles in one-
dimensional network structures was recently proposed as a
direct way to observe non-Abelian features of Majorana
bound states [18].

Moreover, non-Abelian quasiparticles have been sug-
gested as a basis for topological quantum computing
[19], computational steps being done by physically ex-
changing (braiding) positions of the quasiparticles, thus
performing a unitary rotation in the ground-state manifold.
In principle, the exchange operation only depends on the
topology of the exchange and it is therefore argued to be
robust against local perturbations [2,13]. However, braid-
ing of Majorana fermions must be supplemented with
nonprotected gates to give a universal set of operations.
Several methods have been suggested, including merging
the quasiparticles for a certain time [20] or combining
topological and conventional qubits [21–23].

In this Letter, a different method for performing opera-
tions on a set of Majorana bound states is analyzed.

The individual operations are adiabatic tunnel processes of
a single electron from a Coulomb blockaded quantum dot
coupled to one or two Majorana modes. The processes
result in rotations of the ground-state manifold, reminis-
cent of actual physical exchange of the particles. Like real-
space braidings, the tunnel-braid operations are robust
against dephasing. However, they are sensitive to electrical
noise on the tunnel amplitudes, and in this respect not
topologically protected. The electrical control, on the other
hand, allows rotations with tunable angle. Moreover, to
achieve the maximal protection of the tunnel braids, a
certain phase difference (controllable by flux) between
the two Majorana bound states is needed.
The system we have in mind is a connected network

of one-dimensional wires, made of out of semiconducting
nanowires, or gated two-dimensional electron gas, with
spin-orbit coupling, induced superconductivity and applied
magnetic field, and in addition a number of quantum dots,
see the sketch in Fig. 2(a). For parameters where the
superconductor is in the topological phase, Majorana
bound states (MBSs) exist at the ends of the wires [6–9].
They are zero energy solutions to the Boguliubov–de
Gennes equations and have the general form

�i ¼
Z

drðfi�" þ f�i�
y
" þ gi�# þ g�i�

y
# Þ: (1)

The MBS operators obey �i ¼ �y
i and �

2
i ¼ 1. Here fi and

gi are functions of the spatial coordinate r and �� ¼
��ðrÞ is the electron field operator. The Majorana bound
states are tunnel coupled to quantum dots in the Coulomb
blockade regime, i.e., the charge state on a dot is restricted
to be either N or N þ 1 electrons, with N some arbitrary
number. The level spacing of a dot is supposed to be much
larger than the temperature, so that only one quantum state
is involved. Furthermore, because a large magnetic field is
applied to induce the topological superconducting phase, it
is assumed that spin degeneracy of the dots is broken, so
that we only have to consider a single spin direction, say,
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spin-up. The dot potential energies can be controlled by
electrostatic gates.

Projection onto Majorana bound states f�ig coupled to
an electron level (described by a spin-up electron annihi-
lation operator c) leads to an effective low-energy tunnel
Hamiltonian

HT ¼ X
i

ðvic� v�
i c

yÞ�i; (2)

where vi is the Hamiltonian overlap between the electron
wave function, �, and the spin-up component of the MBS
vi ¼ hfijHj�i. Later it is assumed that vi is controllable.

First, we consider the situation with a single MBS �1

coupled to a single dot and study the transition of the
ground state as the occupancy of the dot is changed adia-
batically. Two Majorana fermions are needed to define a
usual (Dirac) fermion. Using Majorana states �1 and �2 as
the basis, a fermion M12 with annihilation operator d ¼
ð�1 þ i�2Þ=2 is defined. The two eigenstates of dyd are
denoted j0iM12 and j1iM12. The Hamiltonian for a dot level
c connected to a Majorana mode �1 ¼ dþ dy is then

H1 ¼ "cycþ ðv�
1c

y � v1cÞðdþ dyÞ; (3)

where " is the dot level energy, measured relative to
the chemical potential of the superconductor. The Hilbert
space contains 4 states, and the Hamiltonian is block
diagonal by conservation of the total parity. For both
even and odd parity the Hamiltonian matrix is

H1;even or odd ¼
�
0 v1

v�
1 "

�
; (4)

with the basis for even and odd total parity cases being
fj0iDj0iM12; j1iDj1iM12g and fj0iDj1iM12; j1iDj0iM12g,
where 0 (1) represent an empty (full) fermion state, and
j � � �iD denotes the dot state.

Now an operation P1 that adiabatically changes "=v1

from �1 to þ1 is defined, see Fig. 1 [24]. If the original
state of the Majorana system is jiiM ¼ �j0iM12 þ �j1iM12

and the dot state is j1iD, the state of the dot plus Majorana
system is at any gate potential " given by the superposition
(up to an overall dynamical phase factor)

jc i ¼ að"Þj1iDð�j0iM12 þ �j1iM12Þ þ bð"Þj0iDð�j1iM12

þ �j0iM12Þ; (5)

where v1bð�Þ ¼ Eað"Þ and E ¼ "=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"=2Þ2 þ v2

1

q
.

The dot and the Majorana system is thus entangled during
the operation, but not at the end of the operation where
"=v1 ! 1 and b ! 1. Therefore, the operation P1 gener-
ates an inversion of the occupation of the M12 fermion,
which in basis independent notation [25] is expressed as

P1:jiiM � �1jiiM: (6)

If a number of Majorana bound states are connected
to quantum dots, it is thus possible to manipulate the
Majorana system by repeated applications of P operations,

yielding a new state �1; . . . ; �mjiiM. However, because
f�i; �jg ¼ 2�ij this only provides a finite number of op-

erations. Interestingly, two consecutive operations P1P2

correspond to a real-space process where one Majorana
bound state is rotated around the other [26].
A natural question is how sensitive the operations Pi are

to decoherence of the dot charge. To investigate this,
we add environmental degrees of freedom that couple to
the dot charge. At beginning of the P1 process the initial
state is j�ii ¼ j1iDjiiMjnienv, where jnienv is the initial
environment state. When expanding in powers of the tun-
neling Hamiltonian, the time-evolution operation can
be collected in powers of �1 as UðT; 0Þ ¼ U0 þ �1U1. If
the transition is done slowly enough to guarantee that the
occupancy of the dot changes by one (can be checked by
measuring the charge on the dot) only the part �1U1

survives, and Eq. (6) holds, regardless of the dot’s coupling
to the environment.
As mentioned, the single MBS processes in Eq. (6) only

allow a limited set of operations. A richer set is possible
if the dots are connected to two Majorana modes, as in
Fig. 2(a). Using the same basis as above, the even and odd
sector Hamiltonians for MBS �1 and �2 coupled to a dot
(D1 in Fig. 2) are in this case

H12;even or odd ¼
�

0 veven or odd

v�
even or odd "

�
; (7)

where veven ð oddÞ ¼ v1 � ðþÞiv2. In general, the matrix

elements veven and vodd are different and the degeneracy
between the even and the odd cases is lifted. The
ground-state energies are [see Fig. 2(b)]

FIG. 1 (color online). A single Majorana state (M1) coupled to
a quantum dot (D) by a tunnel coupling v1. The Majorana state
M1 is combined with another Majorana bound state, M2, to form
a fermion, M12. Starting in the ground state, the operation P1

takes the energy " [using the gate (G)] from negative to positive
values causing an adiabatic transition from a full dot to an empty
dot. The electron is added to the superconductor, thus inverting
the parity of the Majorana system. Because the total even (red
[dark gray]) and odd (blue [light gray]) parity states are degen-
erate the inversion is independent of the details of the transition.
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Eeven or odd ¼ "=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"=2Þ2 þ v2 � 2jv1v2j sinð’1=2Þ

q
;

(8)

where v2 ¼ jv1j2 þ jv2j2 and ’1 ¼ 2Argðv1=v2Þ. The
phase difference is controlled by the flux �1 and up to
constant phase shift, we can write ’1 ¼ �1=�0, with �1

being the flux in loop 1 and�0 ¼ h=2e. Note that Eq. (8) is
4� periodic in ’1 [27].

Again, consider an adiabatic process that transfers an
electron from a dot but this time to the two Majorana states
�1 and �2. Unlike the case with a single MBS, the resulting
rotation of the Majorana system is in general not indepen-
dent of the time spend in the adiabatic process, because of
the energy difference in Eq. (8), see Fig. 2(b). The degen-
eracy is restored only when the phase difference is ’1 ¼
2n� (n integer), which therefore requires tuning the mag-
netic flux�1 [Fig. 2(a)]. At this degeneracy point, v1=v2 is
real which allows the Hamiltonian to be written as

H12 ¼ "~cy~cþ vð~cy � ~cÞ�12; (9)

where a new Majorana operator is defined

�12 ¼ 1

v
ðjv1j�1 þ jv2j�2Þ; (10)

and where a common phase is absorbed into the dot-
electron operator ~c ¼ c exp½iArgðv1Þ�. Thus, since the
Hamiltonian (9) has the same form as (3), a dot coupled
to two MBSs reduces (at the degeneracy point) to a dot
coupled to a single Majorana state �12. The conclusion
from above therefore also carries over: by adiabatically
changing the electron number of the dot, the following
rotation is performed

P12:jii � �12jii: (11)

To understand the rotations that can be generated by
repeated applications of P12 (with different ratios jv1=v2j),
we use the following Pauli matrixes acting on the two level
system spanned by �1 and �2: �x ¼ �1, �y ¼ �2, and

�z ¼ �i�1�2. In this language, the operation P12 makes
a � rotation around an axis in the x-y plane, but other
rotation angles around lines in the x-y plane cannot
be done. In contrast, when applying a pair P12P

0
12 ¼ðu�1þv�2Þðu0�1þv0�2Þ ¼ ðuu0 þvv0Þþ iðuv0 �vu0Þ�z

a rotation around the z axis with tunable angle is per-
formed. A braid operation also rotates around the z axis,
but by an angle restricted to�=2. Instead, using four MBSs
and the even-parity subspace to define a qubit [20], a
universal set of single qubit rotations is in fact generated
by pairs of P operators. Again, P12P

0
12 is a rotation around

the z axis [in the basis fð00Þ; ð11Þg defined below], whereas
P23P

0
23 now gives a rotation around the x axis with a

controllable angle [28].
A special and illuminating case is when the dots couple

with equal strength to two MBSs [jv1j ¼ jv2j in Eq. (10)],
which results in operators Fi ¼ 1ffiffi

2
p ð�i þ �jþ1Þ acting

on nearest neighbors. They are related to braid operators
Bi ¼ 1ffiffi

2
p ð1þ �iþ1�iÞ [26] by Bi ¼ Fi�i ¼ �iþ1Fi. The Fi

operators fulfill F2
i ¼ 1 and

FiFj ¼ �FjFi; ji� jj> 1 (12a)

FiFiþ1Fi ¼ �Fiþ1FiFiþ1; (12b)

which differs by a minus sign from the relations defining
the braid group [1]. As a side remark, Fi form a projective
representation of the permutation group [29].
To demonstrate the non-Abelian nature of the tunnel-

braid operations, consider now an explicit example with
four Majorana states and three dots. The state of the
superconductor is initialized by tuning the dots and the
magnetic field to fuse Majorana pairs (1, 2) and (3, 4) and
letting them relax. The initial state is j00i ¼ j0iM12j0iM34,
referring to the occupation of the fermions, d1 ¼ ð�1 þ
i�2Þ=2 and d2 ¼ ð�3 þ i�4Þ=2. We will consider applica-
tions of pairs of Fi and hence restrict to the subspace

of even parity, spanned by j00i and j11i ¼ dy2d
y
1 j00i. The

possible unitary transformations are given by

ðF1F2Þeven ¼ ½ðF2F3Þeven�T ¼ 1ffiffiffi
2

p
�
1 �i
1 i

�
; (13)

FIG. 2 (color online). (a) A one-dimensional array of
Majorana states (M1; . . . ;Mn) coupled to quantum dots (D1,
D2,. . .) in the Coulomb blockade regime. Each dot is tunnel
coupled to two Majorana states with tunnel barriers [controlled
by the gates adjacent to the plunger gates (G1, G2,. . .)].
Changing the occupancy of the dots by one electron creates
the unitary rotations Pij. (b) The ground-state energy of one dot

coupled to two Majorana bound states, with jv1j ¼ jv2j for even
(red) and odd (blue) total parity of a dot and its two connecting
MBSs. Even and odd cases are degenerated for ’1 ¼ 2n�,
which makes the Pij operations partially protected. The full

and dashed lines are for "=jv1j ¼ 0 and 2, respectively.
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and ðF1F3Þeven ¼ �x (up to phase factors). Other permu-
tations can be deduced from FiFj ¼ ½FjFi��1. Application

of F1F2 or F2F1 gives

F1F2j00i ¼ 1ffiffiffi
2

p ðj00i þ j11iÞ; (14a)

F2F1j00i ¼ 1ffiffiffi
2

p ðj00i þ ij11iÞ: (14b)

For one sequence the resulting state is an eigenstate
of �x and for the other it is an eigenstate of �y.

However, the expectation values of neither of these opera-
tors are easily measured using quantum dots, capable of
measuring charge only. Initial application of F2F3 and
F3F2 in Eqs. (14) rotates to states that can be distinguished
by an occupation measurement and this yields

F1F2F2F3j00i ¼ j11i; (15a)

F2F1F3F2j00i ¼ j00i: (15b)

The last sequence can be implemented in the following
way: the potentials on the dots D1, D2, and D3 in Fig. 2(a)
are successively increased from positive to negative volt-
ages, thus emptying the dots, and then D2 is filled again
by tuning the D2 potential back to positive voltages. The
sequence (15a) is done in the same way, except in a
different order.

Finally, we discuss how the state of the Majorana system
can be read out. Several methods have been proposed to
measure the state of coupled Majorana modes, including
observing changes in the current-phase relation of a
Josephson junction with two Majorana states in the loop
[3,30], or by interferometry [1,14]. In the present setup it is
natural to use the quantum dots, which is indeed possible.
By choosing the phase difference between two MBSs,
so that the fused even or odd states are split in energy,
the occupancy can be read from the adiabatic curves simi-
lar to the one in Fig. 1, because the off-diagonal elements
in Eq. (7), unlike in Eq. (4), differ for the even and odd
cases. Maximal visibility is achieved for ’1 ¼ �, where
the two off-diagonal matrix elements are jv1j þ ð�Þjv2j
for even (odd), respectively.

In conclusion, a scheme for manipulating the state of a
set Majorana fermions has been proposed. It allows for
demonstration of the non-Abelian nature of the quasipar-
ticles, albeit not by real-space exchanges. Instead the ex-
changes are performed via removal or addition of real
electrons, made possible by Coulomb blockade.
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