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We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an

optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of

a dissipative quantum dynamical process. In our scheme, cavity decay is no longer undesirable, but plays

an integral part in the dynamics. As a result, we get a qualitative improvement in the scaling of the fidelity

with the cavity parameters. Our analysis indicates that dissipative state preparation is more than just a new

conceptual approach, but can allow for significant improvement as compared to preparation protocols

based on coherent unitary dynamics.
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Preparing entangled states faithfully and reliably has
been one of the major challenges in the field of experimen-
tal quantum information science, where a plethora of differ-
ent systems has been investigated [1]. In particular, several
schemes based on cavity QED have been proposed (see,
e.g., [2–8]), and these schemes have been used to generate
entanglement of atoms using microwave cavities [9,10].

Traditionally, it has been assumed that noise can only have
detrimental effects in quantum information processing.
Recently, however, it has been suggested [11–14], and real-
ized experimentally [15], that the environment can be used as
a resource. In particular, it was shown in Ref. [11] that
universal quantum computation is possible using only dis-
sipation, and that a very large class of states, known as tensor
product states [16,17], can be prepared efficiently. On general
grounds, one may argue that dissipative state preparation can
have significant advantages over other state preparation
methods by converting a detrimental source of noise into a
resource. Whether this is really true can, however, only be
determined by considering concrete physical systems. To
answer this questionwe study the generation of entanglement
in high finesse optical cavities [18–20]. Generating entangle-
ment in this system by unitary evolution has been studied in
great detail theoretically (see, e.g., [2–5]) and the limitations
coming from dissipation are thus well understood. We find
that dissipative state preparation leads to higher fidelity en-
tangled states than schemes based on unitary dynamics for
this system. Our results thus indicate that dissipative state
preparation is more than just a new conceptual approach, but
may also be of significant advantage in practice.

In this Letter, we suggest a dissipative scheme for pre-
paring an entangled state of two � atoms in an optical
cavity, with detunings as depicted in Fig. 1(a). Our scheme
can be understood from Fig. 1(b), which describes the
effective coupled ground states of the atoms in the cavity.
A microwave field shuffles the three triplet state around
while the cavity interaction causes a transition j00ij0i !
jSij1i followed by a rapid decay to jSij0i. The latter is

coupled to j11ij1i which then decays to j11ij0i. Here the
first ket in the pair refers to the atoms, the second to

the cavity photon number, and jSi ¼ ðj01i � j10iÞ= ffiffiffi
2

p
is

the singlet state. The first cavity transition j00ij0i ! jSij1i
is shifted by g2=� due to the interaction of the photon with
a single atom in state j1i in the final state jSij1i, while the
second transition jSij0i ! j11ij1i is shifted by twice that
amount, 2g2=�, due to the interaction of the photon with
two atoms in state j1i. Setting the cavity detuning equal to
g2=� will greatly favor the transition to the singlet state
and strongly suppress the transition away from it. Thus,
essentially all of the population is driven into the maxi-
mally entangled singlet state.
Our protocol actively exploits the cavity decay to drive

the system to a maximally entangled stationary state. The
only generic source of noise left in the system is then
the one coming from spontaneous emission. This leads,
quite remarkably, to a linear scaling of the fidelity with the
cooperativity [see the inset in Fig. 1(c)], which is in con-
trast to schemes based on controlled unitary dynamics,
where there are two malevolent noise sources, cavity and
atomic decay, typically resulting in a weaker square root
scaling of the fidelity [2–6].
We point out that a similar study to ours has been con-

ducted by Wang and Schirmer [21], where they consider a
detuning of the energy levels in order to break the symme-
try in the system, and guarantee a unique steady state. It can
be shown that their scheme, when adapted to optical cav-
ities, does not give a linear scaling of the fidelity [22], but
rather the square root, as for coherent unitary protocols.
In the following, the system-environment interaction

will be assumed Markovian, and can thus be modeled by
a master equation in Lindblad form:

_� ¼ i½�;H� þX
j

Lj�L
y
j �

1

2
ðLy

j Lj�þ �Ly
j LjÞ; (1)

where the Lj’s are the so-called Lindblad operators.

We derive a master equation for the ground states of the
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system, which has the singlet as unique stationary state.
This is achieved in our setup, by constructing an effective
master equation, whose main contributing terms are the
Hamiltonian H ¼ 1

2�MWðJþ þ J�Þ, and the Lindblad op-

erator L� ¼ ffiffiffiffiffiffiffiffi
�eff

p jSih00j, where Jþ ¼ j1ih0j � 1þ 1 �
j1ih0j. It can readily be seen that the microwave field
(�MW) drives the transitions between the three triplet

states (fj00i; j11i; jTi ¼ ðj01i þ j10iÞ= ffiffiffi
2

p g), while the
Lindblad operator, originating from the cavity field leak-
age, will drive the transitions from j00i to jSi. The singlet
state is thus the unique fixed point of this system, and has a
relaxation rate �minf�2

MW=�eff ; �effg. Other terms will

contribute weakly to the dynamics of the system, and
slightly perturb the stationary state away from jSi.

We now show how to prepare this effective system
in a realistic quantum optical setup. Our setup, shown in
Fig. 1(a), consists of two �-type three level atoms in a
detuned cavity with two stable lower energy states j0i and
j1i, and an excited state jei with a large energy separation
to the lower lying states. We apply one far off-resonance
optical laser, with detuning �, driving the 0 $ e transition
and a microwave field driving the 0 $ 1 transition reso-
nantly. The cavity mode couples the 1 $ e transition off-
resonantly, with detuning �� �, where � is the cavity
detuning from two photon resonance. Furthermore, we

assume a � phase difference in the optical laser between
the two atoms. This phase difference is crucial in guaran-
teeing that the singlet is the unique stationary state of the
reduced system.
In a rotating frame, this situation is described by the

Hamiltonian H ¼ H0 þHg þ Vþ þ V�,

H0 ¼ �ayaþ �ðjei1hej þ jei2hejÞ
þ ½gðjei1h1j þ jei2h1jÞaþ H:c:�; (2)

Hg ¼ �MW

2
ðj1i1h0j þ j1i2h0jÞ þ H:c:; (3)

Vþ ¼ �

2
ðjei1h0j � jei2h0jÞ; (4)

where V� ¼ Vy
þ, g is the cavity coupling constant, a is the

cavity field operator,� represents the optical laser driving
strength, and�MW the microwave driving strength. On top
of the Hamiltonian dynamics, two sources of noise will
inherently be present: spontaneous emission of the excited
state of the atoms to the lower states with decay rates �i;
and cavity leakage at a rate �. We assume for convenience
that the spontaneous emission rates are the same for decay-
ing to the j0i and to the j1i states (i.e., �0 ¼ �1 ¼ �=2).
This translates into five Lindblad operators governing dis-

sipation L�¼ ffiffiffiffi
�

p
a, L�

1 ¼
ffiffiffiffiffiffiffiffiffi
�=2

p j0i1hej, L�
2 ¼ ffiffiffiffiffiffiffiffiffi

�=2
p j0i2hej,

L�
3 ¼ ffiffiffiffiffiffiffiffiffi

�=2
p j1i1hej, L�

4 ¼ ffiffiffiffiffiffiffiffiffi
�=2

p j1i2hej.
If the optical pumping laser is sufficiently weak, and if

the excited states are not initially populated, then the
excited states of the atoms, as well as the excited cavity
field modes, can be adiabatically eliminated. The resulting
effective dynamics will describe two two-level systems in a
strongly dissipative environment. To second order in per-
turbation theory, the dynamics are then given by the effec-
tive operators [22]:

Heff ¼ �1
2½V�H�1

NHVþ þ V�ðH�1
NHÞyVþ� þHg; (5)

Leff;j ¼ LjH
�1
NHVþ; (6)

where HNH ¼ H0 � i
2

P
jL

y
j Lj is a non-Hermitian

Hamiltonian describing the nonunitary dynamics of the
excited states which we eliminate. Applying the above
equations to our setup, and keeping only terms to lowest
order in �, the operators in the effective Master equation
can be evaluated explicitly, yielding the effective
Hamiltonian and principle Lindblad operator

Heff ¼1

2
�MWðj1i1h0jþj1i2h0jþH:c:ÞþO

�
�2

�

�
(7)

L�
eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2eff�=2

ðg2=���Þ2þð�=2þ��=2�Þ2
s

jSih00j

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2eff�=2

ð2g2=���Þ2þð�=2þ��=2�Þ2
s

j11ihSj; (8)

where geff ¼ g�=�.
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FIG. 1 (color online). (a) Level diagram of a single atom with
laser detuning � and cavity detuning � from two photon reso-
nance. The optical pumping laser for the two atoms differs by a
relativephase of�. (b)The effective twoqubit system.Thedriving
�MW causes rapid transitions between the three triplet states. The
atoms decay through the cavity from j00i to jSi and from jSi to
j11i with effective decay rates �eff;1 and �eff;2, where �eff;1 �
�eff;2. The spontaneous emission rates�eff;i will tend to reduce the

fidelity by redistributing information to the triplet states.
(c) Fidelity as a function of the cooperativity C ¼ g2=��. The
inset gives a more accurate account of the scaling (1� F �
3:5C�1) for different values of �=�.
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The principal Lindblad operator L�
eff describes the decay

from j00i to jSi at a rate �eff;1 and from jSi to j11i at a rate
�eff;2. The effective decay rates �eff;1 (�eff;2), equal to

the square of the first coefficient, are much smaller than
the cavity decay �eff;i � �, such that the two decays

happen sequentially. The first term in the denominators
represents the effective detuning of the cavity which is
shifted by g2=� by each atom in state j1i in the final state.
Setting the cavity detuning equal to the cavity line shift
from a single atom and ensuring that this is much larger
than the cavity loss (g2=� ¼ � � �þ ��=�) strongly
suppresses the transition out of the singlet state �eff;2 �
�eff;1 ¼: �eff , as can be read off directly from Eq. (9). The

effective Lindblad operator originating from cavity leak-
age then becomes L�

eff � ffiffiffiffiffiffiffiffi
�eff

p jSih00j. The effective

Hamiltonian shuffles the triplet states among each other,
so that the combined effect of the unitary and dissipative
dynamics drives essentially all of the population to
the singlet state. Hence, we have constructed an effective
master equation which approximates the ideal situation
described earlier.

We now consider imperfections imposed by spontane-
ous emission. The four Lindblad operators describing
spontaneous emission will also transform into four inde-
pendent effective noise operators for the reduced system.
In the regime discussed above, and keeping only terms
which drive the population out of the singlet state, the
effective operators for spontaneous emission are

L�
eff;i¼1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�eff;i¼1;2

p j11ihSj
L�
eff;i¼3;4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�eff;i¼3;4

p jTihSj; (9)

where �eff ¼ ��2=2�2, �eff;i¼1;2 ¼ �eff=8, and

�eff;i¼3;4 ¼ �eff=16.
In order to evaluate the performance of the protocol we

denote by Pj the probability to be in state j, and consider

the rate of entering and exiting the singlet state _PS ¼
P00�eff;1 � PSð�eff;2 þP

i�eff;iÞ. The effective spontane-

ous emission will tend to modify the steady state popula-
tion of the three triplet states, but we assume that �MW is
large compared to �eff and �eff , so that all three triplet
states are almost equally populated in steady state. Solving
for the stationary state of the rate equation and plugging in
the decay rates obtained from the effective operators, we
get for PS � 1

1� F � 3P00 � 12ð3�=16þ ��2=2g2Þ
	 ð�=2þ �g2=2�2Þ2=g2�: (10)

Here, F is the fidelity, which is given by the overlap of the
stationary state of the dynamical process with the singlet
state F ¼ jhSj�ssjSij ¼ PS.

There is a trade-off between the second term in the
numerator (�2�=2g2) reflecting the probability to generate
a cavity photon by decaying out of the singlet state, and
the term in the denominator (�g2=2�) reflecting the

scattering of cavity photons off the atoms. The first terms
favors a small detuning � to increase the cavity line shift,
whereas the second term favors a large detuning � to
decrease the scattering. The optimal fidelity is reached
when the two terms in the numerator are similar
(� � ��2=2g2), in which case the two terms in the sum
in the denominator are also similar (� � �2g2=�2). This
leads to an error scaling as

1� F / C�1; (11)

where C ¼ g2=�� is commonly referred to as the cooper-
ativity. Plugging in the values in Eq. (10) one gets a
proportionality factor of roughly 3 in Eq. (11). By numeri-
cally extracting the fixed point of the full master equation,
and then maximizing its fidelity with respect to the singlet
for fixed values of C, we get that the actual constant is
closer to 3.5 [inset in Fig. 1(c)], i.e., 1� F � 3:5C�1. This
discrepancy can be attributed to the fact that we did not
include all of the spontaneous emission terms in Eq. (10).
In addition, the assumption that all three triplet states are
equally populated is not exact. To support our analysis
further, we also note that the fidelity scaling is essentially
independent of the ratio �=� [inset in Fig. 1(c)].
For comparison, in a controlled unitary dynamics pro-

tocol, the fidelity will suffer errors coming from sponta-
neous emission on the one hand, and from cavity decay on
the other. Decreasing one of the error sources will typically
increase the other in such a way that the optimal value of

the fidelity is 1� F / 1=
ffiffiffiffi
C

p
[6]. Indeed, to the best of our

knowledge, all entangled state preparation protocols based
solely on controlled unitary dynamics scale at best as

1=
ffiffiffiffi
C

p
[2–5]. This means that the linear scaling of the

fidelity from Eq. (11), is a quadratic improvement as
compared to any known closed system entanglement
preparation protocol. We note, however, that it is possible
to beat this if one exploits measurement and feedback
[6–8]. As mentioned previously, the reason for this im-
provement stems from the fact that cavity decay is used as
a resource in our dissipative scheme, so that the only purely
detrimental source of noise is the spontaneous emission.
We point out as well that some systems, such as Circuit
QED [10,23], are ill suited for measurement feedback
schemes, as single photon detection can be a severe ex-
perimental hurdle. For such systems, it could very well be
that a dissipative scheme is more favorable in practice.
The above analysis has been conducted without any

consideration of the speed of convergence. We now
show, that the entangled stationary state can be reached
rapidly. In Fig. 2, we simulate the dynamics of the full
master equation for an appropriate set of parameters.
Starting from an arbitrary initial state, the populations of
the triplet states undergo rapid coherent oscillations with
an envelope decaying at a rate proportional to the gap (the
smallest nonvanishing real part of an eigenvalue of the
Liouvillian), while the singlet state converges to its maxi-
mum value at the same rate.
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For a given cavity, g, �, and � can be considered fixed by
experimental constraints, and the speed of convergence is
primarily governed by the magnitudes of � and �MW.
The speed of convergence can be increased by increasing
the driving laser strength (�), but the latter can not be too
large otherwise perturbation theory breaks down, and the
excited cavity and atomic states can no longer be ignored.
Furthermore, �MW can not be too small with respect to
f�eff ; �effg, otherwise the coherent shuffling of the triplet
states will not be sufficiently strong to keep them at equal
population. The inset in Fig. 2 shows how the maximal
fidelity scales as a function of the gap for a specific set of
cavity parameters. The curve is plotted by optimizing the
fidelity, for given fixed values of the gap, with respect to
f�;�MWg, for fixed values of f�; �g (those which are
optimal for small �). There is clearly a trade-off between
the accuracy of the dissipative state preparation protocol
and the speed at which one reaches the stationary state, but
close to optimal fidelity the dependence is weak.

Present day experimentally achievable values for the
cooperativity are around C � 30 [18–20]. This puts our
scheme at �90% fidelity with respect to the singlet state.
While this is still limited, the prospect for improving it is
much more promising with the current protocol than for
protocols based on controlled unitary dynamics; e.g., de-
creasing the error by and order of magnitude would require
improving the cavity finesse by a factor of 10 as opposed to
a factor of 100 with the square root scaling. Figure 2 shows
that the stationary state is reached in a time �1000=g,
which yields for g ¼ ð2�Þ35 MHz [18] a convergence
time of roughly 5 �s starting from an arbitrary initial state.
This is much faster than typical decoherence time scales
for this system.

We have investigated the possible advantage of dissipa-
tive state preparation by proposing a novel scheme for the

preparation of an entangled state of two trapped atoms in
an optical cavity. From both analytical and numerical
evidence, we give the scaling of the error explicitly, and
show that the stationary state is reached rapidly. Our results
indicate that not only can one produce entanglement dis-
sipatively in a simple cavity system, but, to the best of our
knowledge, the scaling of the fidelity for such entangle-
ment preparation is better than any existing coherent uni-
tary protocol. These results are an indication that an
approach based on dissipation can be very fruitful for state
preparation, as one manifestly can transform a previously
undesirable noise source into a resource. It would be
interesting to see if one could obtain similar results in
related systems such as trapped ions or solid state based
quantum devices, where dissipation traditionally plays a
detrimental role.
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FIG. 2 (color online). The main figure shows the population of
the singlet state (thick dashed line) and of the three triplet states
(full lines) as a function of time for a random initial state. The
curves were plotted for C ¼ 50, � ¼ �=2, � ¼ 5 �MW=2,
g ¼ 20 �, and �, � are such that they maximize the fidelity
for small �. In this parameter regime, the stationary state has a
92% fidelity with respect to the singlet state. The inset shows the
maximal fidelity as a function of the gap size for C ¼ 50 and
� ¼ �=2. The main figure corresponds to the cross on the curve
in the inset.
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