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We introduce a family of Hamiltonian systems for measurement-based quantum computation with

continuous variables. The Hamiltonians (i) are quadratic, and therefore two body, (ii) are of short range,

(iii) are frustration-free, and (iv) possess a constant energy gap proportional to the squared inverse of the

squeezing. Their ground states are the celebrated Gaussian graph states, which are universal resources for

quantum computation in the limit of infinite squeezing. These Hamiltonians constitute the basic ingredient

for the adiabatic preparation of graph states and thus open new venues for the physical realization of

continuous-variable quantum computing beyond the standard optical approaches. We characterize the

correlations in these systems at thermal equilibrium. In particular, we prove that the correlations across

any multipartition are contained exactly in its boundary, automatically yielding a correlation area law.
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Introduction.—The realization of a device that can per-
form arbitrary quantum-state manipulations—a universal
quantum processor—is nowadays one of the most active
and promising searches in physics. All the resources on
which we count for the realization of these machines
in turn fall into one out of two fully-general categories:
quantum states of discrete-variable (DV), finite-
dimensional systems and quantum states of continuous-
variable (CV), infinite-dimensional ones. For both
categories, considerable progress has been achieved.
In particular, an entire spectrum of new possibilities for
state manipulation was opened by the landmark discovery
that it is possible to process quantum information in a
universal manner by the simple act of performing local
measurements [1]. This discovery originally took place in
the finite-dimensional scenario, but was later on extended
to CV systems [2]. In these measurement-based quantum-
computation (MBQC) approaches, information processing
proceeds by a sequence of adaptive single-particle mea-
surements on massively entangled multiparticle states pre-
pared in advance. These states are the so-called cluster
states, introduced first for DV systems [1,3] and then
extended to the CV case [2,4]. The local measurements
consume cluster-state entanglement as the main resource
of the computation.

Cluster states are in turn particular instances of a more
general family: the graph states [5]. Other examples of
graph states of importance are the Greenberger-Horne-
Zeilinger states and many code words for quantum
error-correction [6]. Every graph state is associated to a
mathematical graph GðV ;EÞ � fV ; Eg, of vertices i 2 V
and edges fi; jg 2 E, with 1 � i, j � N. In both the DVand
CV cases, graph states can be created in an operational
way: starting from a product state of N particles, each one
associated to a vertex in V , a sequence of entangling

operations between every pair of particles connected by
an edge in E is applied to obtain the desired state [5].
Alternatively, for DV systems, there exists a conceptu-

ally different approach: Every finite-dimensional graph
state is known to be the unique ground state of a local,
gapped graph Hamiltonian. By local we mean involving
direct interactions among only a fixed number of particles;
and by gapped we refer to N-independent finite energy
difference between the ground and first-excited states.
These Hamiltonians make adiabatic state creation possible:
By engineering the interactions so as to effectively repro-
duce the Hamiltonian, the state can be prepared simply by
first cooling down the system to zero temperature and then
switching on the interactions so that the system is adi-
abatically driven toward the ground state of the graph
Hamiltonian. The energy gap imposes a threshold to the
energy that the environment or erroneous manipulations
have to pump into the system in order to drive it out of the
ground state. This peculiarity provides the adiabatic ap-
proach with an intrinsic robustness that the operational
approach does not possess. In addition, the adiabatic ap-
proach is naturally better suited for state preparations at
large scales. This explains the great theoretical effort de-
voted to finding local gapped Hamiltonians with universal
resources for MBQC as ground states in the DV case,
where considerable progress has been achieved [7]. On
the other hand, no such Hamiltonian has been reported
for the CV domain. This is what this Letter presents.
We derive CV graph Hamiltonians HG that are qua-

dratic, gapped, frustration-free (defined below), and of
range two (coupling only nearest or next-to-nearest neigh-
bors). The gap is independent on N and is proportional to
the squared inverse of a squeezing parameter s. The ground
states are the CV Gaussian graph states [2,4,8,9], which
become universal resources for MBQC [2] at criticality
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s ! 1. With Gaussian states as ground states, the fact that
HG is quadratic—and therefore two-body—is no surprise.
However, this is still in striking contrast to the case of
qubits, where it is known that no state useful for MBQC
can be the unique ground state of any two-body frustration-
free Hamiltonian [10].

With HG at hand, it is now also possible to assess the
properties of these bosonic systems in the realistic case of
thermal equilibrium at nonzero temperatures. For example,
we show that the correlations across any multipartition of
the total thermal state are determined exactly by those of
the boundary subsystem in a thermal state at the same
temperature. By correlations, we refer to those measured
by any quantifier invariant under local unitary transforma-
tions, entanglement being arguably the most prominent
example thereof. The boundary subsystem is composed
by the bosons lying at the boundary of the multipartition,
and is typically much smaller than the total system. So, a
considerable decrease in computational effort is gained for
the correlations calculation. In turn, this automatically
delivers a correlation area law [11], even at criticality.
With this, in addition, we prove that for any s <1, these
systems typically display thermal bound entanglement,
even in the thermodynamic limit N ! 1.

CV graph Hamiltonians.—Let us start by recalling the
operational definition of graph states for CV quantum
modes (qumodes) [2,4], which is completely analogous
to that of the DV case: First, for each j 2 V , initialize
qumode j in the zero-eigenvalue eigenstate j0ipj

of the

momentum-quadrature operator p̂j. The computational

basis is taken as that of the eigenstates jvjiqj of the

position-quadrature operator q̂j, with ½q̂j; p̂k� ¼ i�jk,

8 j, k 2 V (we take @ � 1 throughout). The two
bases are related via the Fourier transform Fj: jvjipj

�
1ffiffiffiffiffi
2�

p R
R duje

iujvj jujiqj ¼ Fjjvjiqj . Our starting point j0ipj

is thus the uniform superposition of all computational
states, exactly as in the DV case. Second, for each
fj; kg 2 E, apply a maximally entangling controlled-Z
gate CZjk � eiq̂j�q̂k on neighboring qumodes j and k.

The resulting state is the CV graph state

jGi ¼ CZj0ip; (1)

where CZ (without subindices) is a short-hand notation
for

Q
fj;kg2ECZjk and jvip � N

j2V jvjipj
, with v (without

subindex) standing for the multi-index ðv1; . . . ; vNÞ 2 RN .
In Eq. (1) (and throughout the Letter) we use ‘‘G’’ to
represent ‘‘GðV ;EÞ’’, unless explicitly indicated. Finally, it

is also convenient to introduce the nullifiers

N̂ i � p̂i �
X

j2N i

q̂j; (2)

with N i all the neighbors of i, whose null-eigenvalue

eigenstates are the CV graph states: N̂ijGi ¼ 0, 8 i 2 V
[2]. The latter is a necessary and sufficient condition to
univocally specify state (1).

Momentum eigenstate j0ipj
can in turn be obtained by

infinitely squeezing the vacuum coherent state j0ij: j0ipj
�

lims!1SjðsÞj0ij. The action of the unitary squeezing op-

erator SjðsÞ � ei lnðsÞðq̂jp̂jþp̂jq̂jÞ=2 is to squeeze the position

quadrature by a factor of s and to stretch the conjugate

momentum quadrature by a factor of 1=s: Syj ðsÞq̂jSjðsÞ �
q̂js and Syj ðsÞp̂jSjðsÞ � p̂j=s. Thus, states (1) can be ob-

tained from the vacuo j0i � N
j2V j0ij in the following

way: jGi ¼ lims!1CZSðsÞj0i, being SðsÞ � N
i2VSiðsÞ,

with s � ðs1; . . . ; sNÞ. In a more general way, finitely
squeezed Gaussian graph states are defined as

jGsi ¼ UðsÞj0i � CZSðsÞj0i; (3)

where UðsÞ � CZSðsÞ has been introduced.
Now, consider the eigenequation of N free, noninteract-

ing harmonic oscillators in the ground state,

Ĥ 0j0i �
X
i2V

!i

2
ðq̂2i þ p̂2

i Þj0i ¼ E0j0i; (4)

with Hamiltonian Ĥ0, angular frequencies !i > 0, and
ground-state energy E0 � P

i2V!i=2. Next apply the uni-
tary operator UðsÞ to both sides of (4) from the left:

UðsÞX
i2V

!i

2
ðq̂2i þ p̂2

i ÞUyðsÞUðsÞj0i � E0jGsi: (5)

Invoking the quadrature transformations under squeezing
above, we can rewrite the last equation as CZ

P
i2V

!i

2 �
ðq̂2i =s2 þ p̂2

i s
2ÞCZyjGsi ¼ E0jGsi, where SyðsÞ ¼ Sð1=sÞ

has been used. The remaining controlled-Z gates commute
with all position operators but transform each momentum

operator as CZy
ijp̂jCZij ¼ p̂i þ q̂j. Thus it is CZp̂jCZ

y ¼
N̂j. Equation (5) then takes the form

P
i2V

!i

2 �
ðq̂2i =s2 þ N̂2

i s
2ÞjGsi ¼ E0jGsi, which can be renormalized

to the more convenient form

Ĥ GðsÞjGsi ¼ E0

s2
jGsi; with (6)

Ĥ GðsÞ �
X
i2V

!i

2
ðq̂2i =s4 þ N̂2

i Þ: (7)

Equation (6) constitutes a new ground-state eigenequation,
with (7) as the new Hamiltonian, (3) as the new ground

state, and E0

s2
as the new ground-state energy.

Hamiltonian (7) is in turn the desired graph
Hamiltonian. The natural appearance of the nullifier op-
erators in it is remarkable. As anticipated, the two-body

character of ĤGðsÞ is encapsulated in its quadratic form. In
view of Eq. (2), it is clear that direct couplings only
take place between nearest, or next-to-nearest, neighbors.
In addition, each and all of the terms in (7) commute,
which implies that the Hamiltonian is frustration-free
(meaning that the ground state minimizes the energy of
each local term in the sum). Furthermore, the gap between

the ground and first-excited states is that of Ĥ0 (!imin, with
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!imin ¼: minfi2V g!i) consistently renormalized: !imin=s
2.

At infinite squeezing the gap vanishes and the system is
then called critical. Interestingly enough, however, its ther-
mal states always satisfy a correlation area law as we show
below. In addition, at criticality the graph Hamiltonian (7)

acquires an even simpler form: ĤG � lims!1ĤGðsÞ ¼P
i2V

!i

2 N̂2
i .

The derivation of (7) not only delivers the desired
Hamiltonian but also comes with the interesting byproduct
of readily giving the symplectic transformation that takes
the Hamiltonian to its normal mode decomposition. In this
case, UðsÞ is the unitary representation of such transforma-
tion and maps our Hamiltonian to that of a collection of
noninteracting harmonic oscillators:

UyðsÞĤGðsÞUðsÞ�SyðsÞCZyĤGðsÞCZSðsÞ¼ Ĥ0=s
2; (8)

with Ĥ0 given in (4). What is more, the same unitary
transformation delivers also the Gaussian nullifiers. That
is, N commuting operators with the Gaussian graph state
(3) as their (unique) mutual eigenstate of null eigenvalue.
To see this, instead of eigenequation (4), start by âjj0i � 0,

with âj � ðq̂j þ ip̂jÞ=
ffiffiffi
2

p
the annihilation operator of the

jth qumode, and with the same reasoning as above arrive at

the Gaussian nullifiers N̂jðsÞ � �iq̂j=s
2 þ N̂j, where N̂j is

the jth nullifier (2).
Thermal Gaussian graph states.—Once we have ob-

tained Hamiltonian (7) we can now consider thermal
Gaussian graph states, which are defined in the usual way:

�G;T � e�ĤG=T

Tr½e�ĤG=T� ; (9)

where T is the temperature of the system’s thermal bath
(Boltzmann’s constant is set as unit).

We are now in a position to study the correlations
Cð�G;TÞ across any multipartition of thermal state (9),

with C any arbitrary correlation quantifier invariant under
local unitary transformations. For its evaluation we first
decompose the symplectic unitary as UðsÞ � CZSðsÞ ¼
CZXSYðsÞ � CZ ��S �YðsÞ � UYðsÞ �U �YðsÞ. X � E is the

set of boundary-crossing edges [12], those that connect
vertices belonging to different subpartitions. The latter
vertices in turn compose the set Y � V of boun-
dary vertices [12]. The two sets together constitute the

boundary subgraph GðY;XÞ, and the rest Gð �Y; ��Þ, with �Y �
V =Y and �� � E=X, is called the nonboundary sub-
graph. With this, we notice that �G;T � U �YðsÞ�GðY;XÞ;T�
�0ð �YÞ;TU

y
�Y
ðsÞ. In the last, �GðY;XÞ;T is a thermal state of

the boundary subsystem, defined as in Eq. (9) but with

respect to the boundary subgraph Hamiltonian HGðY;XÞ �P
i2Y

!i

2 ðq̂2i =s4 þ N̂2
YiÞ. Here, N̂Yi � p̂i �P

j2N Yi
q̂j is

the ith nullifier corresponding to the boundary
subgraph—the same as in Eq. (2) but with the sum running
over the setN Yi � N i \Y of the neighbors of i inY � .

In turn, �0ð �YÞ;T is a thermal state of the nonboundary sub-

system with respect to the decoupled harmonic
Hamiltonian H0ðYÞ

� P
i2Y

!i

2 ðq̂2i þ p̂2
i Þ. Notice that

HGðY;XÞ and H0ð �YÞ commute.

Now, by definition, U �YðsÞ is a local unitary operation

with respect to the considered multipartition, so we can
disregard it as for what the correlation evaluation concerns.
Once U �YðsÞ is omitted, the boundary and nonboundary

subsystems are left in the product �GðY;XÞ;T � �0ð �YÞ;T , so all

the correlations across the multipartition are concentrated
in its boundary:

Cð�G;TÞ ¼ Cð�GðY;XÞ;TÞ: (10)

Thermal states of one-dimensional bosonic chains gov-
erned by some specific families of finite-ranged quadratic
Hamiltonians are known to satisfy an entanglement area
law for some particular entanglement quantifiers [11]. An
area law is said to be satisfied when the correlations across
a multiparition scale at most with the size of its boundary.
Equivalence (10) gives us the fully general statement for
thermal Gaussian graph states: they obey an area law for
any geometry and any local-unitary invariant correlation.
Not only that, it gives us much more refined information
for it reduces the correlation-evaluation problem of arbi-
trarily sized specimens (for example, macroscopic ones) to
one on the boundary subsystem, regardless of how well an
area law is satisfied.
In Fig. 1 for instance we have plotted the inverse critical

temperatures at which the logarithmic negativities [13] of
state (9) vanish as a function of the inverse squeezing, for
the exemplary case of one-dimensional graphs and con-
stant Hamiltonian couplings !i ¼ !. The solid curve cor-
responds to any block-to-block bipartition, and the dashed
one to any one-mode-versus-the-rest bipartition [see inset
of Fig. 1]. By equivalence (10), the former is given simply
by the critical temperature T2c of a two-qumode thermal
cluster state, and the latter by that of the bipartition of one
qumode versus the other two in a three-qumode thermal
linear-cluster state, T3c. Both temperatures can be calcu-
lated analytically. For temperatures higher than T2c not
even two-mode entanglement can be (locally) distilled
between any two qumodes in the chain, for if this were
possible then there would be two contiguous blocks with
positive negativity [14,15]. On the other hand, for tempera-
tures lower than (at least) T3c every boson in the chain is
entangled with all the rest. For T2c � T < T3c thus, ther-
malization naturally drives Gaussian 1D graph states of
any size to bound entanglement. This extends of course to
higher-dimensional clusters and nonequal couplings, as in
the DV case [14].
Phase-space diffusions on CV graph states.—In the limit

of infinite squeezing, thermal states (9) become equivalent
to the result of independent Gaussian diffusion along the q̂
direction on pure states (1). This interesting connection
between (collective) thermalization and (independent)
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dephasing is the CV version of the one observed in qubit
graph states [14,16]. Additionally, also for s ! 1, the
evolution of correlations under noise processes described
by arbitrary phase-space-shift maps can be monitored in
terms of the boundary subsystem by translating the whole
machinery for the study of DV graph-state entanglement
under Pauli maps developed in Ref. [12]. This character-
ization is relevant to the development of CV quantum error
correction schemes, but it will be touched upon elsewhere.

Discussions.—As known, states (1) are as nonphysical
idealizations as the free-particle states j0ip. However, uni-
versality for MBQC has only been proven for infinitely
squeezed states [2]. What is more, recent results [9] show
that large-scale MBQC with ‘‘imperfect’’ physical states
(3) faces fundamental limitations that may only be circum-
vented with the full machinery of quantum error correction
and fault tolerance [6]. The latter is yet to be developed
for CV systems, but will presumably demand a very large
overhead in resources. This in turn highlights the
importance of local, short-ranged, gapped CV graph
Hamiltonians, for it is precisely the large-scale scenario
where the adiabatic approach is specially well suited. On
the other hand, states (3) do yield universal resources for
small-sized computations.

From a more applied viewpoint, our findings open new
realistic venues for the physical realization of CV quantum
computing beyond the standard optical approaches. In fact,
the basic constituents of Hamiltonian (7)—namely, the
couplings q̂i � q̂j and p̂i � q̂j—have already been demon-

strated in technologically mature experimental platforms,

as Coulomb crystals [17] and optomechanical resonators
[18]. In addition, this type of couplings have also been
envisioned in coupled-microcavities arrays or supercon-
ducting waveguides [19]. All these constitute examples of
versatile and promising architectures where controlled
geometrical arrangements of the desired interactions
seem feasible in a very near future.
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Note added in proof.—After conclusion of this work,

another paper addressing CV graph Hamiltonians
appeared [20].
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FIG. 1 (color online). High-temperature, high-squeezing re-
gion of the distillability phase diagram of thermal Gaussian
graph states associated to arbitrarily large linear clusters. The
solid curve represents the inverse critical temperature T�1

2c ¼ 2

arccoth (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s4

p
þ s2) (in arbitrary units) at which the negativ-

ity between any two contiguous blocks vanishes as a function
of the inverse squeezing, and the dashed one the analogous

T�1
3c ¼ 2 arccoth ½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s4 � 2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s8 þ s4

pq
Þ�1� for the bipar-

titions of any qumode versus the rest. Between the two curves
every qumode is entangled with all the rest but no entanglement
can be locally extracted.
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