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We derive a quantum Cramér-Rao bound (QCRB) on the error of estimating a time-changing signal.

The QCRB provides a fundamental limit to the performance of general quantum sensors, such as

gravitational-wave detectors, force sensors, and atomic magnetometers. We apply the QCRB to the

problem of force estimation via continuous monitoring of the position of a harmonic oscillator, in which

case the QCRB takes the form of a spectral uncertainty principle. The bound on the force-estimation error

can be achieved by implementing quantum noise cancellation in the experimental setup and applying

smoothing to the observations.
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The accuracy of any sensor is limited by noise. To
quantify the potential performance of a sensor, it is often
useful to compute a lower bound to the error in the esti-
mation of the signal of interest. One of the most widely
used bounds is the Cramér-Rao bound (CRB), which limits
the mean-square error in parameter estimation [1].

The development of quantum technology highlights the
question of how quantum mechanics impacts the perform-
ance of sensors. Helstrom formulated a quantum Cramér-
Rao bound (QCRB) [2], which stipulates that the minimum
estimation error is inversely proportional to a property of
the sensor known as the quantum Fisher information. The
QCRB is central to quantum sensor design in the burgeon-
ing field of quantum metrology [3,4] for several reasons. It
allows one to determine whether the fundamental sensitiv-
ity of a sensor design meets the requirements of an appli-
cation, provides a criterion against which the optimality
of quantum sensing schemes can be tested, and motivates
improvements of schemes that are suboptimal. For sensors
near the fundamental limit, the QCRB can also be used
to quantify the trade-off between sensing accuracy and
physical resources of the sensor, so that efficient ways of
improving sensitivity can be identified.

Most prior work on the QCRB considered estimation of
one or a few fixed parameters. Yet, in most sensing appli-
cations, such as force sensing and magnetometry, the signal
of interest is changing in time. This time-changing signal,
which we call a waveform, is coupled continuously to the
sensor, and continuous measurements on the sensor are
used to extract information about the waveform [5–7].
Here we derive the QCRB for waveform estimation—the
first such derivation to our knowledge—allowing for any
quantum measurement protocol, including sequential, dis-
crete or continuous measurements.

Previous work on the QCRB generally did not take into
account prior information, but for the task of estimating a

waveform, which often depends on an infinite number of
unknown parameters, parameter estimation techniques no
longer suffice and prior information is required to make the
problem well defined [1]. The prior information might, for
example, restrict the signal to a finite bandwidth, making
integrals over frequency finite that otherwise would di-
verge. Thus a crucial feature of our QCRB is the inclusion
of prior waveform information.
Our result provides a rigorous criterion against which

the optimality of design, control, and estimation strategies
for quantum sensors, such as gravitational-wave detectors,
force sensors, and atomic magnetometers, can be tested. As
an example, we calculate the QCRB on the error of force
estimation via continuous position measurements of a har-
monic oscillator, in which case the bound takes the form of
a spectral uncertainty principle. We show that the bound
can be achieved by implementing quantum noise cancel-
lation (QNC) to remove the backaction noise from the
observations [8] and applying the estimation technique of
quantum smoothing [7] to the observations. This proves
the optimality of such control and estimation techniques
for force sensing and establishes our QCRB as the funda-
mental limit to force sensing.
Let xðtÞ denote the classical waveform to be estimated.

For simplicity, we assume xðtÞ to be a scalar function;
generalization to multiple processes is straightforward.
We discretize time as tj ¼ t0 þ j�t, j ¼ 0; 1; . . . ; J, and

assume that �t is small enough that we can treat xðtÞ as
piecewise-constant, i.e., xðtÞ ¼ xj for tj � t < tjþ1. The

prior probability density P½x� for the vector x �
ðxJ�1; . . . ; x0ÞT characterizes what is known or assumed
about the waveform prior to the measurements. For a
vector of observations y � ðyN�1; . . . ; y1; y0ÞT made any
time during the interval t0 < t � tJ, we define a condi-
tional probability density P½yjx�. The joint probability
density is P½y; x� ¼ P½yjx�P½x�. Finally, we define the
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estimate of xj as ~xj½y� and the estimate bias, given signal x,

as
R
Dyð~xj � xjÞP½yjx� � bj½x�, where Dy � Q

N�1
n¼0 dyn.

Multiplying both sides of bj½x� by P½x�, differentiating
with respect to xk, and then integrating over all x using
Dx � QJ�1

j¼0 dxj, we obtain

� �jk þ
Z

DxDyð~xj � xjÞ@P½y; x�@xk

¼
Z

Dx
@

@xk
ðbj½x�P½x�Þ ¼ 0; (1)

where the final equality assumes bj½x�P½x�jxk¼�1 ¼ 0.

This assumption, also used in the proof of the classical
CRB [1], is satisfied as long as the prior density approaches
zero at the infinite endpoints (as it must for any probability
density) and the bias there is not infinite.

Quantum mechanics enters this description, which till
now is classical, by determining the conditional probability
of the observations. Given a quantum system, we can
describe any measurement protocol, including sequential
measurements and excess decoherence, during the interval
t0 � t < tJ by introducing appropriate ancillae, in accord
with the Kraus representation theorem [3,9,10]. This also
accounts for any feedback during the interval, based on the
measurement outcomes, because the principle of deferred
measurement [10] allows one to put off the measurements
on the ancillae till time tJ; measurement-based feedback is
replaced by controlled unitaries prior to the measurements,
as schematically shown in Fig. 1.

In this approach, the overall system dynamics is de-
scribed by unitary evolution of the enlarged system; the
conditional probability of observations is given by
P½yjx� ¼ trðE½y��xÞ, where �x is the density operator of
the enlarged system at time tJ, conditioned upon x, and
E½y� is the positive-operator-valued measure (POVM) that
describes the (deferred) measurements up to time tJ. We
denote expectation values with respect to �x by angle
brackets subscripted by x, so that hE½y�ix � trðE½y��xÞ.
Continuous measurements can be modeled as the limit of
a sequence of infinitesimally weak measurements [3].

We now follow a procedure similar to the one used
by Helstrom [2] to derive the QCRB. We introduce an

operator Qk that satisfies @�x=@xk ¼ ðQk�x þ �xQ
y
k Þ=2.

Unlike Helstrom, we do not require Qk to be Hermitian.
Note that the vanishing trace of @�x=@xk in the definition
of Qk implies that RehQkix ¼ 0.
It is convenient to incorporate the prior information by

working in terms of a density operator �½x� � �xP½x� in a
hybrid quantum-classical space and introducing an opera-

tor Lk ¼ Qk þ @ lnP½x�=@xk, which satisfies @�½x�=@xk ¼
ðLk½x��½x� þ �½x�Ly

k ½x�Þ=2. In terms of Lk, Eq. (1) takes

the form that we use to derive the QCRB

�jk ¼ Re
Z

DxDyð~xj � xjÞtrðE½y�Lk½x��½x�Þ: (2)

Multiplying Eq. (2) by ujvk, where uj and vk are the

components of arbitrary real column vectors u and v, and
then summing over all j and k, we obtain

vTu ¼ X
j

ujvj ¼ Re
Z

DxDytrðAyBÞ; (3)

where Ay � P
kvk

ffiffiffiffiffiffiffiffiffiffi
E½y�p

Lk

ffiffiffiffiffiffiffiffiffi
�½x�p

, B � P
jujð~xj � xjÞ�ffiffiffiffiffiffiffiffiffi

�½x�p ffiffiffiffiffiffiffiffiffiffi
E½y�p

, and T denotes transposition. It follows from
Eq. (3) that

ðvTuÞ2 � j
Z

DxDytrðAyBÞj2

�
Z

DxDytrðAyAÞ
Z

DxDytrðByBÞ; (4)

where the second inequality is the Schwarz inequality.
The second integral in Eq. (4) is

R
DxDytrðByBÞ ¼

uT�u, where

�jk �
Z

DxDyP½x; y�ð~xj � xjÞð~xk � xkÞ (5)

is the estimation-error covariance matrix. The first integral
in Eq. (4) is, using the completeness of the POVM,R
DxDytrðAyAÞ ¼ vTFv, where F is a (real, symmetric)

Fisher-information matrix,

Fjk � 1

2

Z
DxP½x�tr½ðLy

j Lk þ Ly
kLjÞ�x�: (6)

Since RehQkix ¼ 0, F separates neatly into a quantum and

a classical, prior-information component, i.e., F ¼ FðQÞ þ
FðCÞ, where

FðQÞ
jk ¼ 1

2

Z
DxP½x�tr½ðQy

j Qk þQy
kQjÞ�x�; (7)

FðCÞ
jk ¼

Z
DxP½x� @ lnP½x�

@xj

@ lnP½x�
@xk

: (8)

When these results are substituted into Eq. (4), we find
that ðvTFvÞðuT�uÞ � ðvTuÞðuTvÞ. Setting v ¼ F�1u im-
plies that uTð�� F�1Þu � 0 for arbitrary real vectors u.
Since �� F�1 is real and symmetric, this implies that
�� F�1 is positive-semidefinite; the matrix inequality

� � F�1 (9)

is the QCRB in its most general form. To use a CRB in
practice, it is customary to define a non-negative, quadratic

FIG. 1 (color online). Any quantum dynamics and sequential
measurements described by completely positive (CP) maps,
including feedback based on measurement outcomes, as illus-
trated in (a), can be reproduced by unitary evolution of an
enlarged system that includes appropriate ancillae, coherent
controlled unitaries, and deferred measurements of the ancillae,
as shown in (b).
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cost function C � trð�T�Þ using a positive-semidefinite
(Hermitian) cost matrix � suited to the application [1,2].
The matrix QCRB is equivalent to a lower bound, C �
trð�TF�1Þ, on all such cost functions.

To calculate the QCRB, we must be more specific about
the evolution of the enlarged quantum system. The
Hamiltonian that governs overall system dynamics over
the interval tj � t � tjþ1, of duration �t, is HjðxjÞ, with
corresponding evolution operator Uj ¼ exp½�iHjðxjÞ
�t=@�. We have @Uj=@xj ¼ Ujð�ihj�t=@Þ, where hj �
@Hj=@xj. Let Ukj � Uk�1 � � �Uj denote the evolution op-

erator over the interval tj � t � tk. The density operator

�x is related to the initial density operator �0 by �x ¼
UJ0�0U

y
J0, which gives @�x=@xk ¼ �i½Mk; �x�, where

Mk � i
@UJ0

@xk
Uy

J0 ¼
�t

@
UJkhkU

y
Jk ¼

�t

@
UJ0ĥkU

y
J0; (10)

with ĥk � Uy
k0hkUk0 ¼ hðtkÞ being the Heisenberg-picture

version of hk. An obvious choice for Qk is the anti-
Hermitian Qk ¼ �2i�Mk, where �Mk � Mk � hMkix.
The quantum part of the Fisher matrix then becomes

FðQÞ
jk ¼ 4ð�tÞ2

@
2

Z
DxP½x� 1

2
tr½ð�ĥj�ĥk þ �ĥk�ĥjÞ�0�;

(11)

where �ĥk � ĥk � hĥki0. Angle brackets with subscript 0
denote an expectation value with respect to �0. The quan-
tum Fisher information is thus a two-time covariance
function, averaged over P½x�.

To take the continuous-time limit, we let �t ! 0, �jk !
�ðtj; tkÞ, Fjk=ð�tÞ2 ! Fðtj; tkÞ, and �jk=ð�tÞ2 ! �ðtj; tkÞ.
The estimation-error covariance matrix becomes the
two-time covariance function of estimation error, �ðt; t0Þ,
and the Fisher matrix becomes Fðt; t0Þ ¼ FðQÞðt; t0Þ þ
FðCÞðt; t0Þ, with

FðQÞðt; t0Þ ¼ 4

@
2

Z
DxP½x� 1

2
h�hðtÞ�hðt0Þ

þ�hðt0Þ�hðtÞi0; (12)

FðCÞðt; t0Þ ¼
Z

DxP½x�� lnP½x�
�xðtÞ

� lnP½x�
�xðt0Þ ; (13)

�=�xðtÞ being the functional derivative.
In the continuous-time limit, the matrix QCRB retains

the same form as Eq. (9), where the continuous-time

inverse is defined by
RtJ
t0 dt

00Fðt; t00ÞF�1ðt00; t0Þ ¼ �ðt� t0Þ.
The bound on a cost function becomes

C�
Z
dtdt0�ðt;t0Þ�ðt;t0Þ�

Z
dtdt0�ðt;t0ÞF�1ðt;t0Þ: (14)

Equation (14), valid for any cost function, is the most
serviceable expression of our chief result. An important
special case is the point estimation error,

�ðtÞ � �ðt; tÞ ¼ h½~xðtÞ � xðtÞ�2i � F�1ðt; tÞ; (15)

where angle brackets without a subscript denote an overall
quantum-classical average.
To illustrate the use of our QCRB, we consider the

estimation of a force xðtÞ on a quantum harmonic oscilla-
tor. The Hamiltonian is H ¼ p2=2mþm!2

mq
2=2� qxðtÞ,

with q being the position operator, p the momentum
operator, m the mass, and !m the resonant frequency.
In this situation, we have hðtÞ ¼ @H½xðtÞ�=@xðtÞ ¼ �q,
which leads to a quantum component of the Fisher infor-
mation,

FðQÞðt; t0Þ ¼ 4

@
2

1

2
h�qðtÞ�qðt0Þ þ�qðt0Þ�qðtÞi0: (16)

The further average over P½x� in Eq. (11) can be omitted in
Eq. (16) because xðtÞ appears linearly in qðtÞ and thus drops
out of �qðtÞ. If we assume that xðtÞ is a Gaussian process,
the classical, prior-information component of the Fisher
information is the inverse of the prior two-time covariance
function of �xðtÞ [1].
We now assume that all noise processes are stationary.

For a stationary, zero-mean process fðtÞ, the covariance
function hfðtÞfðt0Þi depends only on the time difference
� ¼ t0 � t and can be Fourier-transformed to give the
power spectral density Sfð!Þ�R1

�1d�hfðtÞfðtþ�Þiei!�.

The choice �ðt; t0Þ ¼ exp½i!ðt0 � tÞ�=ðtJ � t0Þ, together
with taking t0 ! �1 and tJ ! 1, makes Cð!Þ the power
spectral density of the estimation error. The QCRB (14)
then becomes a spectral uncertainty principle:

Cð!Þ
�
S�qð!Þ þ @

2

4S�xð!Þ
�
� @

2

4
: (17)

In the time-stationary case, the matrix QCRB is equivalent
to satisfying this spectral uncertainty principle for all !.
A bound on the point estimation error now follows from
� ¼ R1

�1ðd!=2�ÞCð!Þ.
To proceed in our approach, we must specify the mea-

surements that extract the force information from the os-
cillator and include the associated backaction. Thus we
now suppose that one performs continuous position mea-
surements, using, for example, a continuous optical probe.
The observation process is y ¼ qþ �, and the oscillator
equations of motion are dq=dt ¼ p=m and dp=dt ¼
�m!2

mqþ xþ �, where � is the backaction noise. Here
�ðtÞ and �ðtÞ are like the quadrature components of an
optical field, obeying the canonical commutation relation
½�ðtÞ; �ðt0Þ� ¼ i@�ðt� t0Þ. We assume � and � have zero
mean; their spectra satisfy an uncertainty principle,
S�ð!ÞS�ð!Þ � @

2=4 [3,5].

If we introduce a small amount of damping, �qðtÞ is the
inhomogeneous solution for qðtÞ, driven just by �ðtÞ, and
becomes stationary. In the limit of negligible damping, the
spectrum of �q becomes S�qð!Þ ¼ jGð!Þj2S�ð!Þ, where
Gð!Þ � 1=mð!2

m �!2Þ is the oscillator transfer function.
The spectral uncertainty principle (17) now takes the form
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Cð!Þ
�
jGð!Þj2S�ð!Þ þ @

2

4S�xð!Þ
�
� @

2

4
: (18)

The corresponding bound on point estimation error is

� �
Z 1

�1
d!

2�

�
4

@
2
jGð!Þj2S�ð!Þ þ 1

S�xð!Þ
��1

: (19)

Notice that a bandwidth constraint on xðtÞ is incorporated
in the prior information: S�xð!Þ goes to zero outside the
relevant bandwidth, thus allowing Cð!Þ to be zero there
and making the integral (19) finite.

We can elucidate the meaning of the QCRB (19) by
considering how to estimate the force from the observa-
tions in this scenario. In the frequency domain, the obser-
vation process yðtÞ reads yð!Þ ¼ Gð!Þ½xð!Þ þ zð!Þ�, z
being a noise term that depends on � and �. Using smooth-
ing [1,7] to estimate x from y yields an error

� ¼
Z 1

�1
d!

2�

�
1

Szð!Þ þ
1

S�xð!Þ
��1

: (20)

This is the minimum achievable error for a given noise
spectrum Szð!Þ. It cannot be reached by the more well-
known technique of filtering [3], as filtering does not make
use of the entire observation record. If � and � are un-
correlated and quantum limited, we have

Szð!Þ ¼ S�ð!Þ
jGð!Þj2 þ S�ð!Þ � @

jGð!Þj � SSQLð!Þ; (21)

where the power spectrum SSQLð!Þ is known as the stan-

dard quantum limit (SQL) for force detection [5].
It is now evident that to attain the QCRB (19), it is

necessary to beat the SQL. This requires evading or tem-
pering the effects of the backaction �. One way to do this is
to correlate � and �, as was proposed for interferometric
gravitational-wave detectors by Unruh [11]. An alternative
is to use quantum noise cancellation (QNC) [8], which has
the advantage of making the QCRB (19) achievable, as
we now show. One QNC approach, discussed in [8], adds
an auxiliary oscillator with position q0 and momentum p0.
One monitors continuously the collective position Q ¼
qþ q0, giving a process observable y ¼ Qþ �; the back-
action force � acts on P ¼ ðpþ p0Þ=2 and thus equally,
with strength �, on each of the two oscillators. Suppose
the auxiliary oscillator has the same resonant frequency
and equal, but opposite mass (the negative mass can be
simulated by an optical mode at the red sideband of the
optical probe). The dynamics of the collective position
is then determined by dQ=dt ¼ �p=m and d�p=dt ¼
�m!2

mQþ x, where �p ¼ p� p0. There being no back-
action noise in zðtÞ, one easily finds that

Szð!Þ ¼ S�ð!Þ
jGð!Þj2 �

@
2

4S�ð!Þ
1

jGð!Þj2 ; (22)

with equality for quantum-limited noise. This quantum-
noise-cancellation scheme beats the SQL and if the noise is

quantum limited, does so optimally: the smoothing error
given by Eq. (20) achieves the QCRB (19), which implies
that the spectral uncertainty principle (18) is saturated. Our
force-sensing QCRB, rigorously proven and demonstrably
achievable, thus serves as a fundamental quantum limit,
against which the optimality of future force sensing
schemes should be tested. More generally, our QCRB for
arbitrary cost functions (14) will find application whenever
quantum-limited estimation of temporally varying wave-
forms is attempted.
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