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We study the evolution of a population in a two-locus genotype space, in which the negative effects of

two single mutations are overcompensated in a high-fitness double mutant. We discuss how the interplay

of finite population size N and sexual recombination at rate r affects the escape times tesc to the double

mutant. For small populations demographic noise generates massive fluctuations in tesc. The mean escape

time varies nonmonotonically with r, and grows exponentially as lntesc � Nðr� r�Þ3=2 beyond a critical

value r�.
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Point mutations at different loci of the genome affect the
fitness of living organisms via complex intragenomic cor-
relations. These interactions, known as epistasis in popu-
lation genetics, range from elementary pair interactions to
extended patterns reflecting the structure of genetic net-
works [1]. An important form of epistasis termed recipro-
cal sign epistasis occurs when the deleterious effects of a
single point mutation get (over)compensated by the bene-
ficial effects of a secondary mutation [2,3]. The abundance
of such elementary motifs is expected from the nature
of complementary base pair binding in RNA [4,5], but
it also stands to reason that they act as building blocks
of evolutionary processes in more complex ‘‘fitness land-
scapes’’ [3,6].

The effects of epistatic pair correlation can be conven-
iently studied in a two-locus two-allele prototype system,
i.e., a projection of the full genomic structure onto just two
loci with alleles a, A and b, B, respectively. Here, the term
‘‘locus’’ refers to a specific genomic position, and the
‘‘alleles’’ a; . . . ; B stand for the nucleotides present at the
loci. Throughout this Letter we assume a fitness assign-
ment such that the double mutant AB is superior to the
wild-type ab and both have higher fitness than the single
mutants Ab, aB, whose fitnesses are, moreover, taken to
be equal. When evolving under the joint influence of
mutation, selection, sexual recombination, and demo-
graphic noise, this system exhibits dynamical phenomena
on a variety of time scales. Of particular interest here is the
‘‘switching’’ process occurring at very large time scales,
when the effects of a deleterious single mutation at one of
the two loci ab ! Ab or ab ! aB need to be overcome
to reach a high-fitness doubly mutated configuration
ðAb=aBÞ ! AB.

Several decades of research on the two-locus system
notwithstanding [4,5,7–16], important aspects of the above
compensatory mutation mechanism remain insufficiently
understood. While the switching process, termed stochas-
tic tunneling in the literature [9], is relatively well under-
stood in asexuals [11,12], the behavior induced by sexual

recombination is surprisingly complex. This is because
of the dual role played by recombination in this system.
On the one hand, the recombination of the unfavorable
single mutants Abþ aB ! AB provides a channel of
AB generation that does not rely on mutation. On the other
hand, this mechanism competes with back-recombination
ABþ ab ! Ab, aB which breaks up AB genotypes once
they have formed.
Detailed studies of the deterministic, infinite population

dynamics show that the latter mechanism categorically
wins in large populations. Beyond a critical value r� of
the recombination rate r a stable stationary solution local-
ized at the wild-type genotype ab emerges [14], and the
escape to the double mutant AB is completely suppressed
[13]. However, computer simulations of finite populations
also display a parameter regime for r < r� where the
escape is aided by recombination, such that an initial
decrease of the escape time tesc eventually gives way to
an increase at larger values of r [10]. The effect of recom-
bination on the speed of adaptation is thus seen to depend
on the population parameters in a complex way, as has also
been observed in studies using empirical fitness data [17].
In addition to the recombination rate, the dynamics

of the two-locus system is governed by the population
size N, the mutation rate �, and the strength of selection
given by the typical scale of fitness differences s. Here we
focus on populations that are moderately large, in the sense
that N�, Ns � 1, and subject to strong selection with
s=� � 1 [18]. Using a linearization of the full master
equation near the initial wild type population, we derive
an approximate expression for the full distribution of
escape times for r < r�. This allows us to identify two
fundamentally different switching scenarios. In popula-
tions that are smaller than a characteristic size to be speci-
fied below, the temporal bottleneck of the evolution is the
appearance of the first few individuals of the AB popula-
tions, which is a rare event with an exponentially distrib-
uted waiting time. The most likely escape time is then
much smaller than the typical time, and fluctuations in
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tesc are of the same order as the mean. In contrast, in large
populations the evolution is limited by the growth of the
AB population and the distribution of tesc is sharply peaked
around the mean. The nonmonotonicity of tesc observed
in [10] is a feature of the fluctuation-dominated regime
which disappears in large populations.

For r > r� the emergence of bistability in the determi-
nistic dynamics implies that the problem becomes similar
to the noise-driven escape from a metastable state. For this
kind of problem path-integral methods akin to semiclassi-
cal quantum mechanics have recently been developed [19],
and we show that they can be applied in the present context
as well.

Model.—We consider the dynamics of the two-locus
system, as governed by the interplay of selection, mutation
and recombination. The two low fitness genotypes Ab, aB
are lumped into a single subpopulation. This is justified
when the creation rate of single mutants satisfies N� � 1,
such that the number of single mutant individuals is large
compared to unity at all times and the recombination
process Abþ aB ! ðab=ABÞ is not limited by the simul-
taneous presence of both parental types. The fitness of the
three types is given by, respectively, ab $ 1, ðAb=aBÞ $
1� sd, AB $ 1þ sb, where sd;b denote the selection

coefficients of the deleterious single mutants and the
beneficial double mutant relative to the wild type ab,
respectively. Mutation alters allelic content at a rate � �
sd, sb. For instance, ab!2�Ab=aB, where the factor of 2
accounts for the fact that the change of either allele, a or b
generates a single mutant. For simplicity, we will neglect
the effect of back mutation Ab=aB ! ab in our analysis
of the escape time. In view of the smallness of the single
mutant population (see below), this assumption is largely
inconsequential. Finally, the random mating of individuals
generates offspring by recombination at a rate r; for
example, ABþ ab!rðAb=aBÞ.

The (Moran [20]) master equation for the evolution of
the three population sizes, n0 $ ab, n1 $ Abþ aB, and
n2 $ AB at constant total population N ¼ n0 þ n1 þ n2
reads as @tPðx; tÞ ¼ HðxÞPðx; tÞ, where x ¼ ðx0; x1; x2Þ,

HðxÞ ¼ X2

i¼0

½ðEþ
i � 1ÞdiðxÞ þ ðE�

i � 1ÞbiðxÞ

þ ðEþ
i E

�
iþ1 � 1ÞmiðxÞ� þ

X2

i;j¼0

ðEþ
i E

�
j � 1ÞrijðxÞ;

(1)

and the notation emphasizes the analogies to an imaginary
time ‘‘Schrödinger equation.’’ In (1), xi ¼ ni=N are the

genotype ‘‘frequencies,’’ the ‘‘operators’’ E�
i fðxiÞ �

e�ð1=NÞ@xi fðxiÞ ¼ fðxi � N�1Þ act by translation by one
individual, and the rates di, bi, mi, rij are the death, birth,

mutation, and recombination rates [21]. Equation (1) de-
scribes the evolution of the system at one individual death
or birth event per time step. Alternatively, one may employ
a Wright-Fisher approach where an entire generation

update is performed at each step [20]. While this is nu-
merically faster by a factor of OðNÞ, and has been used in
parts of our computer simulations, the long rangedness
of the Wright-Fisher equation in the variables (n0, n1, n2)
makes it difficult to handle analytically.
Escape time.—Figure 1 shows results for the time de-

pendence of (n0, n1, n2) obtained by simulation of the
master equation (1). These profiles depend sensitively
on the value of the parameter N�, where the meaning of

the rate � ¼ 2 �2

sd
þ rð�sdÞ2 will be discussed momentarily.

For �N � 1 (upper panel), the limiting factor for the
escape process is the stochastic generation of a sufficient
number of AB individuals (cf. the inset). Once the
AB clone reaches a critical size, the fitness advantage
triggers a fast sweep through the entire population. In
the opposite case �N � 1, the quasideterministic increase
of the x2 population determines the escape time.
We aim to describe the dynamical processes character-

izing the respective temporal bottlenecks from the master
equation. To this end, we first notice that starting from
an initially unmutated ‘‘wild population’’ ðx0; x1; x2Þ ¼
ð1; 0; 0Þ, a competition of mutation out of the
ab population and a counteracting selection pressure sd
generates a population x1 � �x1 ¼ 2�=sd at short time
scales�s�1

d . In the parameter regime of interest here there

are many individuals in a singly mutated state at any
instance of time, �x1 � N�1. During the evolutionary
stages determining the switching time, the frequencies
x0 ’ 1 and x1 ’ �x1 do not change significantly and the
assumption of independence of P on (x0, x1) does not
lead to qualitative errors. We thus substitute ðx0; x1Þ ’
ð1; �x1Þ into (1) and set x2 � x � n=N for notational sim-
plicity to obtain the linear master equation @tPðn; tÞ ¼
HðnÞPðn; tÞ, where

HðnÞ ¼ ðE� � 1ÞðRþnþ �Þ þ ðEþ � 1ÞR�n (2)

and Rþ ¼ 1
N ð1þ sb þ r=2Þ, R� ¼ 1

N ð1þ 3r=2Þ. The

coefficient � has been defined above, and can now be
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FIG. 1 (color online). Single runs of the escape process. Top
(�N ¼ 0:2): creation of the first AB mutant determines escape
time, bottom (�N ¼ 20): sweep through bulk of the population
determines escape time. In the insets the population size axes
have been enlarged to highlight the initial stages of the process.

PRL 106, 088101 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

25 FEBRUARY 2011

088101-2



understood as the effective rate of generation of double
mutants, including contributions from both the mutational
(�� �x1) and recombinational channel (� r �x21). The usage
of the discrete variable n 2 N in (2) accounts for the
importance of the ‘‘quantization’’ of individuals to our
further analysis. Starting from zero AB individuals,
Pðn; t ¼ 0Þ ¼ �n;0, the time scale for the generation of

an AB clone is set by ��1.
To obtain Pðn; tÞ we adapt the general solution

[22] for the generating function Gðz; tÞ ¼ P1
n¼0 z

nPðn; tÞ
of linear master equations to Eq. (2). This yields Gðz; tÞ ¼
ð1þ �ðtÞð1� zÞÞ��, where � ¼ �=Rþ � N�, �ðtÞ¼
Rþ
�Rðe�Rt�1Þ, and �R¼Rþ�R�>0. Computing the in-

verse transform, we obtain

Pðn; tÞ ¼ �n

ð�þ 1Þnþ�

Yn�1

j¼0

jþ �

jþ 1
: (3)

For fixed n, Pðn; t ! 1Þ scales to zero showing that the
distribution flows towards large values of n. Writing the
master equation in the form @tP ¼ Jn�1 � Jn, we identify
the current JnðtÞ ¼ ðRþnþ �ÞPðn; tÞ � R�ðnþ 1ÞPðnþ
1; tÞ ’ �RnPðn; tÞ at which probability flows through a
fixed reference value n � 1. The flow of the distribution
implies

R
dtJnðtÞ ¼ 1, which shows that JnðtÞ may be

interpreted as the distribution fnðtÞ of escape times through
n. We here consider n ’ N=2 as a reference value where
the AB population is about to take over, while the linear-
ized approximation of the master equation has not yet
become fully invalid. (For most parameter values, the
ensuing threshold times are comparable to the times of
full fixation, n ¼ N.) For large n the product in (3) can be
expressed in terms of the � function, which yields the
result

fnðtÞ 	 �R
�ðtÞn

ð�ðtÞ þ 1Þnþ�
n���1ð�Þ: (4)

Two time scales can be extracted from (4). For t ! 1 the

distribution decays exponentially on the time scale ttail ¼
Rþ
��R . The second time scale is the time at which (4) is

maximal, given by tmax ¼ ð�RÞ�1 lnð�Rn=�þ 1Þ. This is
also the time when the solution of the rate equation _n ¼
�Rnþ � corresponding to (2) reaches the value n. Apart
from the logarithmic factor we see that tmax=ttail ¼ �,
showing that the parameter � distinguishes the two
dynamic regimes described above. For � � 1 the distri-
bution (4) becomes purely exponential, and fluctuations in
tesc are of the same order as the mean ttail. In contrast, for
� � 1 the distribution is sharply peaked around the most
likely value tmax, with fluctuations of order �t with

�t=tmax � N�1=2.
Inserting the explicit expressions for Rþ, �R, and �

it is straightforward to show that ttail displays a minimum
as a function of r provided sd < sb=2, i.e., in cases where
the fitness valley separating the genotypes ab and AB
is relatively shallow. The minimum is located at

rmin ¼ sb=2� sd < sb=2. The maximal speedup due to
recombination can be substantial, and is given by

ttailðrminÞ=ttailðr ¼ 0Þ 	 8sd
sb

for� � sd � sb [23]. By con-

trast, tmax increases monotonically with r.
Metastability.—Both time scales diverge when �R�

ðsb � rÞ vanishes as r ! sb. Within the simplified model
defined by (2), this reflects the emergence of a stable
stationary distribution centered around the wild-type
genotype ab, which has been found in previous studies
of the deterministic model [8,13,14]. Figure 2 shows
the mean values tescðrÞ (triangles) along with the escape
times obtained from the simulation of the Moran master
equation (1) (bars), and from the solution of the corre-
sponding deterministic rate equations (dots). All three
curves show a rapid increase of the escape time at the
critical value r� ’ sb. The rationale behind this behavior
is that at strong recombination the ‘‘reshuffling’’ ABþ
ab!rAb, bA outperforms the fitness advantage of the AB
population, thus preventing its growth.
We sketch the analysis of the model near criticality,

r ’ r�. To this end we consider a Fokker-Planck approxi-
mation to (1), i.e., a second order expansion in the
‘‘momentum’’ variables pi ¼ @xi . This results in an opera-

tor of the generic formH ¼ � 1
N piFi þ 1

2N2 piXijpj, where

the Fi denote the components of the deterministic drift
term and Xij is the diffusion matrix. Eliminating one

frequency by normalization, x0 ¼ 1� x1 � x2, the prob-
lem becomes two dimensional with i ¼ 1, 2. The quickly

equilibrating frequency �x1 � 2�
sd
of the single mutant popu-

lation follows from stationarity under drift, F1ðx0; �x1Þ ¼ 0,
which gets us to the effective one-dimensional
Hamiltonian, H ¼ � 1

N pFþ 1
2N2 Xp

2, where we have

set x2 ¼ x and p2 ¼ p for notational simplicity. Then
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FIG. 2 (color online). Mean escape times as a function of r for
sb ¼ 0:1, sd ¼ 0:025, � ¼ 10�4. Upper panel: N ¼ 107, lower
panel, N ¼ 104. Error bars in lower panel illustrate the large
fluctuations in the escape time, and inset highlights the minimum
in tesc at r ¼ rmin.
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FðxÞ � F2ðx; �x1Þ, XðxÞ � X22ðx; �x1Þ 	 xð1� xÞ describe
the effective dynamics of the AB population.

The singularities in the escape times reflect the emer-
gence of a pair of stable (x�s) and unstable (x�u) fixed points,
Fðx�s;uÞ ¼ 0, 0< x�s < x�u � 1, close to the boundary

x ¼ 0 (inset of Fig. 3). The unstable fixed point x�u defines
a ‘‘recombination barrier’’ [4] which blocks the fixation of
the fitter population out of a small number of initial indi-
viduals xð0Þ< x�u. Based on general results for the escape
from metastable states obtained within a large deviations
(‘‘WKB’’) approach [19], one expects the escape time
to grow exponentially with N as tesc � exp½CN�3�, where
C> 0 is a constant and �� x�u � x�s . The analysis of
the deterministic Wright-Fisher version of the problem

shows that �� ðr� r�Þ1=2 [14], and we predict that tesc �
exp½CNðr� r�Þ3=2�. Figure 3 shows data for the escape
time obtained by simulating a Wright-Fisher process [17]
at values of r slightly above r�. The value r� ’ 0:09172
was calculated using expressions derived in [14] for the
deterministic (N ! 1) limit. The results are seen to be in

good agreement with the prediction lntesc � ðr� r�Þ3=2.
Conclusion.—To summarize, we have presented

an analysis of a paradigmatic two-locus model of

population genetics. We have seen how, depending on
the population size, recombination may speed up or delay
the evolution towards the high fitness state. A challenge
for future work is to develop the WKB-type approxima-
tion for r > r� into a fully quantitative theory, which can
be used to predict the size of the recombination barrier in
a specific biological setting.
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FIG. 3 (color online). Main figure shows the logarithm of the
escape time, normalized to its value at r ¼ r�, as a function of
r� r� in double-logarithmic scales. The escape time was de-
fined as the time when the AB clone reaches 80% of the total
population. Black dots correspond to simulations of a population
of size N ¼ 226 	 6:7
 107 with parameters sb ¼ 0:1, sd ¼
0:025, and � ¼ 10�5. All data are averaged over 105 runs. The
straight line has slope 3=2. The inset illustrates the deterministic
one-dimensional dynamics of the AB population. The vertical
graph on the left shows the shape of the function FðxÞ for r < r�
(dashed line) and r > r� (dotted line). The horizontal graph
shows the evolution of the fixed point structure with r. For
r < r� the only fixed point is near x2 ¼ x 	 1; for r > r� another
pair of fixed points (x�s , x�u) emerges near x 	 0.
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