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We use molecular dynamics simulations to calculate the phonon energy emitted during rapid crack

propagation in brittle crystals. We show that this energy is different for different crack planes and

propagation directions and that it is responsible for various phenomena at several length scales:

energetically preferred crack systems and crack deflection at the atomic scale, reduced maximum crack

speed with volume at the micrometer scale, and the inability of a crack to attain the theoretical limiting

speed at the macroscale. We propose to include the contribution of this energy in the Freund equation of

motion of a dynamically propagating crack.
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Crack speed and crack surface features originate from
atomistic scale events and are determined by a discrete
sequence of an enormous number of bond ruptures, each
occurring on a time scale of less than a picosecond and
must satisfy precise energy conservation laws. This is true
for physical phenomena that span many orders of magni-
tudes of length scales, from crack propagation in Earth’s
crust to fracture in submicrometer scale devices.

The existing treatment of crack dynamics in brittle
materials is based on continuum elasticity, and is deter-
mined by an energy balance through the Freund equation
of motion [1]. The strain energy released when a crack
advances by a unit area G0 is consumed by the energy to
create new surfaces �ðVÞ and by the energy dissipated by
the elastic waves generated during propagation GKðVÞ,
where V is the crack speed. Freund formulated the net
energy to break the bonds at the crack surface as the
product of G0 and a universal dynamical function GdðVÞ.
In a continuum mechanical treatment, he showed that
GdðVÞ may be approximated as a linear function of the
crack speed [1] for propagation at a constant speed V:

�ðVÞ ¼ G0GdðVÞ �G0

�
1� V

CR

�
: (1)

At low crack speed, propagation takes place when
�ðVÞ ¼ 2�, the Griffith energy [2], which is the lower
bound for the energy required to generate new surfaces. It
is important to note that the term G0ðV=CRÞ in Eq. (1)
approximates GK, the elastic wave energy release rate
(ERR) only, designated by us as GEl. This term does not
account for the atomistic nature of matter. The speed scale
parameter CR in Eq. (1) is the Rayleigh free surface wave
speed, considered by Stroh [3] as the crack speed limit in
solids. However, experiments [4–13] and atomistic com-
puter simulations [14–16] have shown that the maximum
speed a crack can attain is only 70%–90% ofCR. Moreover,
fracture experiments of silicon specimens under bending

[11,13] have shown crack deflection from (110) to (111)
cleavage plane of silicon. These two phenomena indicate
that additional energy dissipationmechanisms should exist.
We study by atomistic simulations the contribution of

the thermal phonon energy to the ERR in dynamic fracture.
While this energy was previously suggested as a possible
energy dissipation mechanism [11–13,16–18], thorough
analysis has not yet been performed. Here we show that
the phonon ERR is the missing link in the equation of
motion; it allows us to interpret critical aspects in dynamic
fracture such as limiting crack speed and surface instabil-
ities. In addition, we point out the multiscale effect of this
energy dissipation mechanism.
We investigated energy dissipation during dynamic

crack propagation for a variety of crack speeds in
diamond-cubic silicon, which has two preferred low
energy cleavage planes, (111) and (110). We used molecu-
lar dynamics (MD) simulations to evaluate the contribution
of the phonon emission to the dynamical ERR in a model
system silicon crystal. In this study, we use the modified
Stillinger-Weber (SW) potential [15] to describe a model
of a brittle crystal with a diamond structure unit cell with
lattice parameter 5.431 Å.
To study crack propagation, we used a precracked strip-

like specimen, subjected to prescribed displacement on
the boundaries, commonly used in atomistic simulations
[14–16,18]. Samples consisting of about 120 000 atoms
arranged in a diamond lattice were set up for the computa-
tional experiments. The dimensions of the specimens were
about 450� 160� 20 (in Å). Six different cleavage sys-
tems for a wide range of crack velocities were investigated.
A precrack, 20% of the length of the specimen (nearly
40 atoms), was created by removing one atomic layer at the
mid of the sample’s height. The MD integration time
step was set to 0.383 fs, which is 3 orders of magnitude
smaller than the time unit equivalent to the Einstein
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frequency of this potential [19]; i.e., both optical and
acoustical phonons are simulated, which cannot be
achieved by other discrete lattice models. In order to obtain
the displacement field of a stable crack at zero temperature,
the load was applied by quasistatic increments of homoge-
neous strain of 10�5 followed by a relaxation using a
conjugate gradient method. These were applied up to
fracture (total strain of� 6� 10�2). The atomic configu-
rations, just a few strain increments before fracture, were
used as an input to microcanonical MD simulations. The
initial velocities were set to distribute normally around a
value that is equivalent to 10 K.

Periodic boundary conditions were employed along the
sample’s thickness direction z. The positions of the upper-
most and lowermost two atomic layers were kept fixed
during the relaxation and the MD simulation. The positions
of the outermost left and right two atomic layers are free
during relaxation but kept fixed during the MD simula-
tions. To determine the energy dissipated by phonon emis-
sion over a relatively wide range of crack speeds, we
stopped the MD simulations after the crack has ruptured
about 20 bonds. We then rescaled homogeneously the
entire strain field gradually in strain steps of �10�3 each
to the desired level, which resulted in an increased or
decreased crack tip speed. After this step the outermost
two atomic positions layers of the model were kept fixed
and the time evolution of the sample was again simulated
with microcanonical MD. The stepwise loading changes
the strain field homogeneously and thus can be used at any
stage of the simulation and also prevents shock waves in
the specimen [18]. Both the kinetic energy and crack tip
position were calculated during crack propagation, their
averages were calculated for the first 4 ps of the MD runs to
avoid interaction between reflected waves and the crack
tip. The IMD [20] code was used to conduct the conjugate
gradient relaxations and MD simulations. The strain ERR
in our systems is given by

G0 ¼ 1
2HE� �"2; (2)

where �" is the final remote applied strain normal to the
crack surface direction andH is the height of the specimen.
The effective secular elastic constant E� in Eq. (2) is
determined in separate calculations using the modified
SW interatomic potential; E� vary nearly linearly with �",
where dE�=d �" is approximately 8 GPa for each 1% strain
for all the cleavage systems. For a crack propagating at a
constant velocity V, the total kinetic ERR Gk can be
explicitly calculated by our MD simulations using

GMD
K ¼ 2

@EK

@A
¼ 2

bV

@EK

@t
; (3)

where b is the width of the model and A is the crack surface
area. The factor of 2 originates from the equipartition
theorem; i.e., the waves emitted from the crack tip carry
equal amounts of potential energy and kinetic energy EK.
A least squares routine was utilized to calculate the
gradient of the kinetic energy. Similar methodology was
used by Jin et al. [21] for dislocations dynamics.

It is important to note that the high frequency atomistic
vibrations, or thermal phonons, cause thermal expansion
and partial relaxation of the strain tensor near the crack tip.
It is hence reasonable to assume thatG0 in Eq. (1) available
to drive the crack reduces by Gph, and the reduced speed V

is that obtained in the MD calculations. GMD
K contains

both the contributions of the elastic waves and the phonon
ERR, namely,GMD

K ¼ GEl þGph. GEl was calculated from

Eq. (1) using the reduced speed V and Gph by subtracting

GEl from GMD
K :

Gph

2�
� GMD

K

2�
� V

CR

�
1� V

CR

��1
: (4)

The elastic constants vary along the crack propagation
direction, and therefore CR is not a direct function of the
strains. Hence, we chose to use CR of the relaxed crystal.
The anisotropic CR [22] was calculated by the modified
SW potential (see values in [23]) for each cleavage system.
We analyzed six crack systems, shown in the inset of
Fig. 1(a). Several phenomena are evident from these cal-
culations: Gph at V < 0:4CR is small, becomes significant

at V > 0:5CR, and prevents the crack from attaining CR. In
addition, Gph is influenced by crystal anisotropy, as the

terminal speed bounds between 0:52CR and 0:64CR.
Towards terminal speed cracks obviously attempt to run
as fast as possible and will choose the crack system that
permits the highest speeds. This can even lead to changes
in preferred crack systems: at V > 0:4CR, cracks on the

FIG. 1 (color online). (a) The normalized phonon emission
ERR, Gph=2�, as a function of the normalized crack speed,

V=CR, for six cleavage systems (first brackets denote the cleav-
age plane, the second the crack propagation direction) obtained
by Eq. (4). The energy dissipated by phonon emission increases
rapidly around V=CR > 0:5, which may describe surface phe-
nomena such as in-plane anisotropy of the silicon (111) cleavage
plane as shown in the (b) AFM image of the fracture surface of
cleaved silicon specimen under tension, at speed larger than
0:5CR. The subnanoscale ridges indicate that the crack is prop-
agating in the ½21�3� direction. The anisotropic phonon ERR also
explains the deflection phenomenon in silicon under bending
[11,13] schematically shown in (c) crack deflected primarily
fromð110Þ½1�12� to ð111Þ½11�2� at V > 0:45CR. The dashed lines
in (a) were calculated by Eq. (6).
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(111) cleavage plane prefer to propagate in the ½11�2� and
½21�3� directions over the ½1�10� direction. We observed this
phenomenon on the fracture surface of silicon, cleaved on
the ð111Þ½11�2� cleavage system under tension (see [7] for
details of experiments). The fracture surface depicted by an
atomic force microscope (AFM) scan (where V > 0:5CR),
demonstrated inclined ridge patterns at an angle that co-
incides with the ½21�3� direction, as shown in Fig. 1(b).
While Gph [Fig. 1(a)] was similar for the ½11�2� and ½21�3�
directions, the experiment showed that the latter is pre-
ferred. Furthermore, cracks on the (110) cleavage plane
prefer the ½1�10� direction over the ½11�1� and the ½1�12�
directions [Fig. 1(a)]. This is again in excellent agreement
with previous experimental results [8] which showed that
the ½1�10� direction is preferred on the (110) cleavage plane
in single crystal silicon.

The macroscopic crack deflection observed in bending
cleavage experiments of silicon [11,13] can be rationalized
with the anisotropy of Gph, Fig. 1(a). Our calculations

predict that cracks propagating on the ð110Þ½1�12� system
will deflect to the least energetic ð111Þ½11�2� system at
V=CR � 0:45. This is in good agreement with experiments
[11,13], as schematically shown in Fig. 1(c). The calcula-
tions also predict that crack propagation on the ð110Þ½1�10�
system will not deflect to the ð111Þ½1�10� system, as Gph in

the former is smaller. This is also shown in experiments
presented in [11,13] and schematically shown in Fig. 1(c).

Next, we suggest incorporating Gph in the Freund equa-

tion [Eq. (1)]. We first modeledGph as if it is generated by a

line heat source, attached to the moving crack front at
constant speed V, in an infinite isotropic body, whose
temperature profile is [24]

�Tðr; �; VÞ ¼ QðV=2��Þ exp½�Vr cos�=2��K0ðVr=2�Þ;
where � and � are the thermal conductivity and diffusivity,
respectively, K0 is the second kind zero order Bessel
function, Q the thermal energy, and r and � are the coor-
dinates from the crack tip. Gph was calculated by the Rice

J integral, in the same way the elastic waves were treated
by Freund [1]:

Gph ¼ 2
Z

��

3

2
kB�Tðr; �; VÞ�n1d ��

¼ Q
V

A
exp

�
�V

B

�
K0

�
V

B

�
; (5)

where n1 is a unit vector directed normal to the path �,
which coincides with the sample boundaries, A ¼
2��=ð3�kBHÞ, B ¼ 2�=L, � the atomic density, and L
and H the width and height of the specimen, respectively.
Gph in the form of the right-hand side of Eq. (5) was added

to the right-hand side of Eq. (1). The resultant V=CR vs
G0=2� (see parameters in [25]) is shown by the dash-
dotted red line in Fig. 2 together with the Freund equation.
Obviously,Gph from Eq. (5) brings in terms of higher order

in V=CR that reduces the speed of the crack.

Normalized crack speed as a function of normalized
driving force as obtained by our MD simulations is also
shown for all six cleavage systems in Fig. 2. Differences in
the different simulation results are attributed to the crystal
anisotropy, the finite volume of the simulated model, and
the temperature dependency of the material parameters.
Based on the above, one possibleway to incorporate a crack
system specific Gph in the Freund equation of motion [1] is

by using a power law of V=CR [justified by Eq. (5)], and
hence we rewrite Eq. (1) in the following form:

�ðVÞ ¼ G0

�
1� V

CR

�
�
V

CR

�
�
�
: (6)

The power � then is a phenomenological material
parameter which depends among other factors on the an-
isotropy of the crystal and the volume of the cracked body.
Our MD calculations were best fitted when �� 2:5–4:5, as
shown in Figs. 1(a) and 2. Note the good agreement be-
tween Gph obtained by our MD calculations with Gph of

Eq. (5) substituted into Eq. (1), as shown in Fig. 2. Higher
values of � imply that the phonon energy dissipated is
lower. The limiting velocity that a crack can attain, Vmax,
for a given cleavage system is achieved at G0 � 2�, and
thus Eq. (6) provides one-to-one relation between Vmax and
�. The reported experimental terminal velocities range
between 0:7CR and 0:9CR [4,8,13]. According to Eq. (6),
such velocities are possible with � values ranging between
6 and 30, meaning that phonon emission dissipates 21% to
6% of the strain energy inserted into the specimen, respec-
tively. The relative amount of consumed energy may of
course depend on system size and, hence, possible size
effect must be considered.
We, therefore, calculated the terminal crack speed for dif-

ferent volumes of cracked bodies. Samples with the same

FIG. 2 (color online). V=CR vs G0=2� for the six cleavage
systems obtained by our MD calculations. The solid line is the
Freund equation of motion [1] [Eq. (1)]. The extended Freund
equation of motion containing the phonon ERR by the line heat
source model, Eq. (5), is shown by the red dot-dashed line and by
our MD calculations, Eq. (6), by dashed lines, with two limiting
values of the material parameter, � ¼ 2:5 and 4.5. The inset
shows that G0 ¼ GK þ 2�, and, presumably, no other energy
dissipation mechanisms exist.
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geometry and boundary conditions that contained 25 K,
250 K, 2.5 M, and 25M atoms were analyzed, which corres-
ponds to height, H ¼ 18; 55; 175; 553 nm. The normalized
terminal crack speeds, Vmax=CR, vs the specimen height are
shown in Fig. 3. It is evident that, as the volume of the
cracked body decreases, the maximum crack speed de-
creases. For the 18 nm height specimen, the maximum crack
speed was 0:58CR. The MD with semiempirical interatomic
potential failed to evaluate crack speed above 0:65CR in the
largest volume, and nonlinear deformations prevailed.

Using the heat source model, we calculated the radius of
the heated process zone, rpz ¼ r when �T � 0:1 K (1% of

the temperature of the unloaded atomistic model). For V ¼
0:7CR, rpz � 150 nm. We therefore suggest that for height

smaller than�1 �m (6rpz), the heated zone is comparable

with the height H; hence, the portion of the dissipated
phonon ERR increases. At increased volume, the ERR
dissipated by phonons is relatively small compared with
the strain ERR in the body. More energy is then available
for the bond breaking mechanisms, and crack speed in-
creases; see Fig. 3. The volume effect is incorporated in
Eq. (6) by the power �.

It is worth noting that we performed MD simulations of
dynamic fracture at a temperature range of 10–300 K. The
results showed that the terminal crack speed (Vmax) is not
affected by the increased temperature (cf. [26]), meaning
that Gph is not affected by temperature at that range.

In summary, we showed that on the atomic scale, Gph

dictates the preferred direction of crack propagation and
crack deflection. These results are in excellent agreement
with experimental results. On the submicrometer scale,
Gph dictates the maximum crack speed, such that the

maximum crack speed only reaches about 0:6CR, which
is practical in fracture of nanotubes or graphene sheets. On

the other hand, at the macroscale, this energy prevents the
crack speed from attaining CR, the theoretical limit speed,
though this effect is relatively small in large volumes. It
was shown that Gph strongly depends on crack speed,

volume, and on the atomistic arrangement at the crack
tip. An additional term was suggested to the Freund equa-
tion of motion of a dynamically propagating crack.
Consequently, the modified Freund equation of motion
now can be utilized in a continuum-based model, such as
finite element analysis.
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