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Viscous compressible flow around a sphere is considered in the limit of zero Reynolds and Mach

numbers. An exact expression for the force on the sphere undergoing arbitrary motion with compressi-

bility effects is presented. Quasisteady, inviscid-unsteady, and viscous-unsteady force components are

identified. Numerical results are in excellent agreement with the theory. The present formulation offers an

explicit expression for the unsteady force in the time domain and can be considered as a generalization of

the Basset-Boussinesq-Oseen equation to compressible flow.
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Introduction.—The unsteady force on a particle in accel-
erated motion was first analyzed by Stokes [1]. Later
Basset [2], Boussinesq [3], and Oseen [4] independently
examined the time-dependent force on a sphere in a quies-
cent viscous incompressible fluid. The resulting equation
of motion the so-called BBO equation, can be written as
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where mp, vðtÞ, and a are the particle mass, velocity, and

radius. �, mf, �, and � are the density, displaced-mass,

dynamic viscosity, and kinematic viscosity of the fluid.
The three terms on the right-hand side are the quasisteady
(Stokes) drag, inviscid-unsteady (added-mass), and
viscous-unsteady (Basset history) forces, respectively.
The BBO equation has been extended to nonuniform
creeping flows by Maxey and Riley [5] and Gatignol [6].

Our primary goal is to extend the BBO equation to
compressible flows. The first work relevant to our goal
appears to be that of Zwanzig and Bixon [7] (also see
Metiu et al. [8]). Temkin and Leung [9] and Guz [10]
have presented solutions that are essentially identical.

The purpose of this work is to present an explicit ex-
pression for the time-dependent force on a spherical parti-
cle undergoing arbitrary unsteady motion on the acoustic
time scale such that compressibility effects are important.
Attention is restricted to the zero Reynolds- and Mach-
number limits. We use previously derived solutions of the
linearized compressible Navier-Stokes equations in the
Fourier or Laplace domains to determine the force on a
particle in response to a delta-function acceleration in the
time domain. This force response is then used to construct
an expression for the time-dependent force on a particle
undergoing arbitrary motion. The resulting expression can
be interpreted as the generalization of the BBO equation to
compressible flows. We show that compressibility causes

the inviscid-unsteady force to assume an integral represen-
tation first derived by Longhorn [11]. We obtain the effect
of compressibility on the viscous-unsteady force. The re-
sults are compared with numerical simulations.
Problem formulation.—We consider the unsteady mo-

tion of a particle in a quiescent compressible Newtonian
fluid. We consider the limit of Re ! 0 and M ! 0 such
that the perturbation field generated by the particle motion
is governed by the linearized compressible Navier-Stokes
equations. Here, M and Re are suitably defined Mach and
Reynolds numbers. The continuity and momentum equa-
tions reduce to the form given by Zwanzig and Bixon [7],

@�0

@t
þ �0r � u0 ¼ 0; (2)

�0

@u0

@t
þrp0 ��r2u0 �

�
�b þ 1

3
�

�
rr � u0 ¼ 0: (3)

In Eqs. (2) and (3), properties associated with the quiescent
fluid are denoted by the subscript 0, perturbation quantities
are denoted by the superscript 0, u is the velocity, p is the
pressure, and �b is the bulk viscosity. Speed of sound
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is used as a closure relation. These linearized equations
have been solved analytically by Zwanzig and Bixon [7],
who obtained an explicit expression for the force on the
particle in the frequency domain. Given a general particle
motion with velocity vðtÞ, the solution of Eqs. (2)–(4) in
Laplace space can be written as

F ðsÞ ¼ �mfsGðr1; r2ÞLðvÞ (5)

where F ðsÞ ¼ LðFðtÞÞ and LðvÞ are the Laplace trans-
forms of the time-dependent force FðtÞ and rectilinear
particle velocity vðtÞ, respectively, and mf ¼ 4��0a

3=3.

The transfer function Gðr1; r2Þ is given by
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Gðr1; r2Þ ¼ ð9þ 9r1 þ 2r21Þð1þ r2Þ þ ð1þ r1Þr22
r21ð1þ r2Þ þ ð2þ 2r1 þ r21Þr22

; (6)
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Solution for impulsive motion.—Since the problem is
linear, the force on a particle undergoing arbitrary recti-
linear motion vðtÞ can be expressed as

FðtÞ ¼
Z t

�1
F�ðt� �Þdv

dt
jt¼�d�; (8)

where F�ðtÞ is the force response to a delta-function ac-
celeration (i.e., corresponding to a unit step change in
particle velocity). Using Eq. (5), F�ðtÞ can be expressed as

F �ðsÞ ¼ �mfGðr1; r2Þ: (9)

An explicit Laplace inverse transform of Eq. (9) and,
therefore, a closed-form expression for F�ðtÞ is not readily
available. Before constructing the time-domain solution,
we first analyze the limiting case of incompressible flow by
letting c0 ! 1 to obtain in the time domain

F�;incðtÞ ¼ �6�a�HðtÞ �mf
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ffiffiffiffiffiffiffi
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r
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where HðtÞ is the Heaviside step function.
Compressibility effect on inviscid-unsteady force.—We

isolate the three terms (quasisteady, inviscid-unsteady, and
viscous-unsteady forces) on the right-hand side of Eq. (1)
and investigate the effect of compressibility. First, we
consider the compressibility effect on the inviscid-
unsteady force. The inviscid limit is obtained by substitut-
ing � ¼ 0 in Eq. (9) to get in the time domain

F�;iuð�Þ ¼ �mf

c0
a
e�� cos�Hð�Þ; (11)

where � ¼ c0t=a. The effect of compressibility on the
inviscid-unsteady force can be established by comparing
Eq. (11) with the second term on the right-hand side of
Eq. (10). The finite speed of sound destroys the instanta-
neous relationship between acceleration and force by reg-
ularizing the singular delta-function kernel to a smooth
oscillatory exponential decay. From a physical perspective,
this can be explained by the compression and rarefaction
waves that emanate from the accelerated particle which
propagate outward at finite speed. However, due to the
exponential-decay term in Eq. (11), the compressibility
effect is significant only for � & 10.

The above inviscid-unsteady force was first obtained by
Longhorn [11] and is valid only in the zero Mach-number
limit. The right-hand side of Eq. (11) can be considered to
be the response kernel for a delta-function acceleration for
M ! 0. Note that

R1
0 e�� cos�d� ¼ 1=2, and thus over

times much longer than the acoustic time scale, the net
impulse on the particle reduces to the correct limit of the
incompressible added-mass force. The corresponding ker-
nels for finite Mach numbers can be obtained through
numerical simulations, see Parmar et al. [12].
Asymptotic behaviors of compressible viscous-unsteady

force.—We now examine the effect of compressibility on
the viscous-unsteady force. To study the force at arbitrary
times, we resort to numerical inversion of Eq. (9). With V
denoting the scale of the velocity variation, we define
the Reynolds and Mach numbers as Re ¼ �0Va=� and
M ¼ V=c0. We can write

F�ð�Þ=ðmfc0=aÞ ¼ �L�1ðGðR1; R2ÞÞ; (12)

where L�1 denotes the Laplace inverse with respect to the
nondimensional time � ¼ c0t=a and R1 and R2 are func-
tions of non-dimensional Laplace variables S ¼ as=c0 and
modified Knudsen number Kn0 ¼ M=Re. For the contin-
uum assumption we are interested in Kn0 & Oð10�2Þ.
Four different asymptotic regimes can be identified:

(i) Regime I: Very short time, defined as � � Kn0 � 1,
(ii) Regime II: Intermediate short time, defined as Kn0 �
� � 1, (iii) Regime III: Intermediate long time, defined as
1 � � � 1=ðReMÞ, (iv) Regime IV: Very long time, de-
fined as 1 � 1=ðReMÞ � �.
The very short time behavior of F�ð�Þ can be obtained

by considering 1 � Kn0jSj � jSj. The corresponding
time-domain force response in Regime I is

F�ð�Þ � �
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Comparing with the third term on the right-hand side of

Eq. (10), which can be written as �6a2�0c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Kn0=�

p
, it

can been seen that compressibility modifies the viscous-
unsteady force at very short times by a factor that depends
on �b=�. For �b ¼ 0, compressibility reduces the un-

steady force by 4ð1þ 1=
ffiffiffi
3

p Þ=9 � 0:70.
The intermediate short time behavior is obtained by

considering Kn0jSj � 1 � jSj. Then GðR1; R2Þ can be
simplified and in Regime II we obtain

F�ð�Þ � �mf

c0
a
e�� cos�� 8

3
a2�0c0

ffiffiffiffiffiffiffiffiffiffiffiffi
�Kn0

�

s
Hð�Þ: (14)

The first term is same as F�;iuð�Þ given by Eq. (11).

Comparing the second term with the third term on the
right-hand side of Eq. (10), it can been seen that the
viscous-unsteady force at intermediate short times is
reduced by a factor of 4=9 � 0:44 because of compressi-
bility. Note that this reduction is independent of �b=�. As
will be seen below in Fig. 1, Regime II can be observed
only if Kn0 � 1. With increasing Kn0, the duration of the
Regime II reduces and vanishes entirely for Kn0 � 10�2.
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The intermediate long-time behavior can be obtained by
considering jSj ! 0 and carrying out the Laplace inverse
to obtain in Regime III

F�ð�Þ � �6�a�Hð�Þ � 6a2�0c0

ffiffiffiffiffiffiffiffiffiffiffiffi
�Kn0

�

s
: (15)

Comparing with Eq. (10), both the quasisteady and the
viscous-unsteady forces are recovered and found to be
unaffected by compressibility effects. Strictly speaking,
the above linear solution is valid for � � 1 and the addi-
tional limit of � � 1=ðReMÞ arises only from the neglect
of the nonlinear terms. In deriving the linearized equations,
the assumption that the inertial terms are negligible
compared to the viscous terms implies that the length scale
L � �=V. If we take the length scale to grow by dif-
fusion as

ffiffiffiffiffi
�t

p
, the linearization can be justified only for

t � �=V2. Expressed in terms of the acoustic time scale,
this restriction becomes � � 1=ðReMÞ. Note that the
above argument applies in an incompressible flow also,
and the nonlinear effects can be shown to become impor-
tant for �c � 1=Re, where �c is time nondimensionalized
by the convective time scale a=V. This is consistent with
past results for incompressible flow that the Basset history
kernel is valid only for �c � 1=Re even at low Reynolds
numbers (see Mei and Adrian [13]). Thus, the very long
time force behavior in Regime IV will depend on both
Re and M in a complex manner.

Numerical evaluation of viscous-unsteady force.—We
isolate the viscous-unsteady force from the overall force
expression given in Eq. (12) by subtracting the quasisteady
contribution and the inviscid-unsteady force given in
Eq. (11).

F�;vuð�Þ
mfc0=a

¼ �
�
L�1ðGÞ � 9

2
Kn0 � e�� cos�

�
: (16)

We recast this viscous-unsteady response to delta-function
acceleration in the following form

F�;vuð�Þ=ðmfc0=aÞ ¼ � 9

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kn0=ð��

p
ÞCð�Þ; (17)

where Cð�Þ is a compressible correction function, defined
as the ratio of F�;vuð�Þ relative to the incompressible form

of the viscous-unsteady force.
Figure 1 shows Cð�Þ plotted against �. In Regime I (� �

Kn0 � 1) the correction function approaches 0.70 at very
short times. Also, we observe that Cð�Þ ! 1 as � ! 1 as
expected. At intermediate short times (which exist only for
Kn0 � 10�2) the correction function takes a constant value
of 0.44. At about � ¼ Oð10�2Kn0Þ, Cð�Þ starts to deviate
from its limiting value of 0.70 and monotonically decreases
to 0.44 at about � ¼ OðKn0Þ. The transition from Regime II
to Regime III that occurs at � � Oð1Þ is more complex. At
� ¼ Oð10�2Þ, Cð�Þ increases rapidly irrespective of Kn0
toward a peak value of about 1.45 before decreasing in a
strongly damped oscillatory manner. Thus, the compressi-
bility correction to the viscous-unsteady force is bounded
between 0.44 and 1.45 for �b ¼ 0. The sensitivity of Cð�Þ
to the bulk viscosity is also shown in Fig. 1.
Unsteady force kernels.—Based on results presented in

the previous sections, we write

F� ¼ F�;qs þ F�;iu þ F�;vu; (18)

where F�;qs ¼ �6��aHð�Þ is the quasisteady force in

response to a delta-function acceleration. While the nor-
malized inviscid-unsteady force depends only on �, the
normalized viscous-unsteady force also depends on both
Kn0 and�b=� throughCð�Þ. The above force response to a
delta-function acceleration can be used to define inviscid-
and viscous-unsteady force kernels as

Kiuð�Þ ¼ e�� cos�;

KvuðtÞ ¼ Cðc0t=aÞffiffi
t

p ¼ Cðc0t=aÞKBðtÞ;
(19)

where KBðtÞ is the Basset history kernel.
We have carried out numerical simulations for �b ¼ 0,

wherein the spherical particle is initially stationary in a
quiescent fluid and impulsively accelerated to a final steady
state. To extract the unsteady force, we subtract the qua-
sisteady standard drag. The results of the simulations are
shown in Fig. 2, where the nondimensional unsteady force
is plotted as a function of the acoustic time � ¼ c0t=a.
The agreement between the theory and the simulations is

excellent. The simulations capture accurately the ��1=2

decay for both � � 1 and � * Oð10Þ. At intermediate
times, the influence of the inviscid-unsteady force becomes
significant.
In the first three simulations, we have 1=ðReMÞ ¼

f104; 103; 102g, respectively, and thus the agreement be-
tween the nonlinear simulations and the linear theory is
good over the entire range of the computed time interval.

FIG. 1. The behavior of Cð�Þ that accounts for the compressi-
bility effect on the viscous-unsteady force.

PRL 106, 084501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

25 FEBRUARY 2011

084501-3



We have also simulated a case of M ¼ 10�1 and Re ¼ 10,
corresponding to Kn0 ¼ 10�2. Since 1=ðReMÞ ¼ 1 for
this case, the effect of nonlinearity becomes important
for � � Oð1Þ and the results of the simulation show a faster

decay than ��1=2.
As � ! 0, while the inviscid kernel is equal to unity,

the viscous kernel diverges as 1=
ffiffiffi
�

p
. At large times, the

inviscid kernel decays exponentially, while the viscous
kernel decays algebraically. Thus, both at short and long
times, the viscous-unsteady force dominates the inviscid-
unsteady force. It can be shown that forKn0 < 5:96� 10�2

there exists an intermediate range of time where the
inviscid-unsteady force will exceed the viscous-unsteady
force.

Generalization of the BBO equation to compressible
flows.—The above-presented results can be used to write a
generalization of the BBO equation to compressible flow as
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where the inviscid- and viscous-unsteady force kernels are
given in Eq. (19). The significance of this extension is
twofold. First, it includes explicit expressions for the
inviscid-unsteady and viscous-unsteady components of
the force that reduce to their well-known counterparts in
the incompressible limit. Second, the extension can be
combined with other forces such as buoyancy and lift to
give a complete equation of motion.

When the proposed equation of motion (20) is used in
practice, an expression for Cð�Þ is required. A curve fit
with less than 1% error (see Fig. 1) has been given in
Parmar [14] with more detailed discussion.
Finally, it should also be pointed out that the kernels

presented in Eq. (19) combined with the correction func-
tion Cð�Þ are appropriate in the limit of Re ! 0 and
M ! 0. The finite M influence on the inviscid kernel has
been addressed by Parmar et al. [12]. Similarly, the cor-
rection functionCð�Þ can be expected to depend on both Re
and M.
Conclusions.—We have obtained an explicit equation

for the time-dependent force on a spherical particle under-
going arbitrary unsteady motion in a compressible flow.
The resulting equation of motion is the generalization of
the Basset-Boussinesq-Oseen equation to the compressible
regime. The significance of this extension is that it includes
explicit expressions for the quasisteady, inviscid-unsteady,
and viscous-unsteady components of the force, which
reduce to their well-known counterparts in the incompress-
ible limit. The effect of compressibility on the inviscid-
unsteady force is significant, while the effect on the
viscous-unsteady force is modest. The modification due
to compressibility appears as a multiplicative correction
function Cðc0t=aÞ to the Basset history force, whose value
is bounded, 4=9 � Cðc0t=aÞ< 1:5 (for zero bulk viscos-
ity). The effect of compressibility on the inviscid-unsteady
and the viscous-unsteady force is significant only up to few
acoustic times, say t < 10a=c0.
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FIG. 2. Time evolution of the normalized unsteady force.
Theoretical predictions [last two terms of Eq. (18)] are plotted
as solid lines for �b ¼ 0. Corresponding simulation results for
four different cases are shown as symbols.
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