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We give the first construction of covariant coherent closed string states, which may be identified with

fundamental cosmic strings. We outline the requirements for a string state to describe a cosmic string, and

provide an explicit and simple map that relates three different descriptions: classical strings, light cone

gauge quantum states, and covariant vertex operators. The resulting coherent state vertex operators have a

classical interpretation and are in one-to-one correspondence with arbitrary classical closed string loops.
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The construction of covariant closed string coherent states
with an arbitrary distribution of harmonics has been sought
after for many years. The naive construction based on oscil-
lator coherent states does not lead to physical states [1,2].
Ways out include a nonstandard gauge fixing [2] and a non-
standard light cone gauge quantization [3]. See also [4,5].
With the realization that cosmic superstrings may lead to
observational signatures for string theory the necessity of
understanding macroscopic string states with a classical
interpretation has become of paramount importance.
Cosmic superstrings are expected to be produced in the early

Universe at the end of (e.g., D3-D3) brane inflation, in, e.g.,
models with warped throats (KLMT) or large compact
dimensions (see, e.g., [6,7], and references therein).

Almost all predictions to date concerning cosmic super-
strings are either classical and neglect effects of gravita-
tional backreaction (which can be important even for order
of magnitude estimates [8]), involve cosmic strings in their
vacuum state (with no harmonics excited) [9], or involve
mass eigenstates (with only first harmonics excited)
[10–14] which are not expected to reproduce the classical
evolution [2,12]. These computations need to be extended
to more realistic cosmic superstrings and in what follows
we discuss the first construction of a closed string covariant
coherent state [15] with arbitrarily excited harmonics, a
large fundamental cosmic string loop. Further details and
the corresponding open string construction are presented in
a companion paper [16].

Classically, a cosmic string with position X
�
cl depending

on world sheet coordinates z, �z (see [17]) evolves accord-
ing to the equations of motion and constraints [18],
@ �@X

�
cl ¼ 0, ð@XclÞ2 ¼ ð �@XclÞ2 ¼ 0. Explicit solutions are

easily obtained in light cone gauge where one takes Xþ
cl ¼

2pþ�, and for the transverse directions one finds

Xi
clðz; �zÞ�xi¼�iki lnjzj2þ i

X
n�0

1

n
ð�i

nz
�nþ ��i

n �z
�nÞ: (1)

In string theory cosmic strings are described by vertex
operators. These are composed of the fields present in
the theory, Xðz; �zÞ and g��ðz; �zÞ. Because of conformal

invariance the explicit dependence on g�� drops

out [19,20], states in the underlying Hilbert space
transform like one-particle states under Poincaré
transformations [21], and therefore normal ordered
closed string vertices are of the form Vðz; �zÞ ¼P

�P�½@#X�eikð�ÞL XðzÞ �P �½ �@#X�eikð�ÞR Xð�zÞ, with P �,
�P � (to be

determined) polynomials and kð�ÞL , kð�ÞR left- and right-
moving momenta associated to the momentum eigenstate
�. We wish to derive the explicit form of Vðz; �zÞ and to do
so we search for vertex operators which (a) transform
correctly under all symmetries of string theory, (b) ideally
possess spacetime covariance, (c) are macroscopic and
massive, (d) possess classical expectation values, e.g.,
hX�i ¼ X�

cl , hJ��i ¼ J��
cl , provided these are compatible

with (a), and (e) have small uncertainty in momentum and
position (relative to the center of mass). Requirement (a) is
dictated by string theory, while (b) is preferred for com-
patibility with standard string technology (e.g., [20,22]) for
string amplitude computations. Requirements (c)–(e)
would be our targets for a quantum state most closely
approximating a large classical string.
Let us elaborate on (d). Recall that L?

0 � �L?
0 generates

rigid spacelike world sheet translations [23], � ! �þ �,
so that hVj½L?

0 � �L?
0 ; X

i�jVi ¼ hVj@�XijVi, with L?
0 ,

�L?
0

the transverse Virasoro generators (defined below). As
pointed out in [2], we see that states invariant under shifts,

e�i�ðL?
0
� �L?

0
ÞjVi ¼ jVi, obey @�hXii ¼ 0, implying that

hX�i ¼ X�
cl in (d) cannot be realized. This is, nevertheless,

a good condition for classicality when ðL?
0 � �L?

0 ÞjVi � 0
and hXii is evaluated in light cone gauge and we will see
that this is only possible when the underlying spacetime
manifold is compactified in a lightlike direction, X� �
X� þ 2	R�.
For light cone or covariant gauge states that do not

live in a null-compactified background [which satisfy
ðL?

0 � �L?
0 ÞjVi ¼ 0 or ðL0 � �L0ÞjVi ¼ 0, respectively],

the fact that hXi � Xcl is a gauge problem and says nothing
about the classicality of the corresponding quantum states.
That this is a gauge problem was shown in [2], by adding a
gauge fixing term,
ðc� H

}zz@zX
1Þwith c a c number and
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 a Lagrange multiplier, to the Polyakov action. This fixes
the remaining world sheet translation invariance and en-
forces the constraint ðc� �1

1ÞjVi ¼ 0. The Virasoro con-
straint L0 � �L0 ¼ 0 determines �1�1 in terms of the
remaining (in light cone gauge, transverse) oscillators.
This enables one to construct eigenstates of the annihilation
operators (out of the remaining oscillators), for which
hX�i ¼ X

�
cl , which need not be manifestly level matched,

thus proving that the argument that led to hX�i � X
�
cl is a

gauge problem; see also [3]. This procedure is somewhat
messy. Instead, working in light cone or covariant gaugewe
shall replace the classicality condition hX�i ¼ X�

cl in (d)

with

hXið�0; �ÞXjð�; �Þi ¼
Z 2	

0
}sXi

clð�0 � s; �ÞXj
clð�� s; �Þ;

(2)

modulo zero mode contributions, with Xi
cl defined in (1), X

i

given by a similar expression with operators �i
n, ~�

i
n, x̂

i, p̂i

replacing �i
n, ��i

n, x
i, ki and }s � ds=ð2	Þ. Rather than

fixing the invariance under � translations on the quantum
side (as done in [2]) we average over � translations on the
classical side.

We first construct states which satisfy the requirements
(a)–(e). If we proceed by analogy to the harmonic oscillator

coherent states e
a
y j0i (with aj0i ¼ 0 and ½a; ay� ¼ 1)

which have classical expectation values, @2t hxðtÞi ¼
�!2hxðtÞi, and consider the naive closed string state V �
e
n��ne

�
n ~��neikXðz;�zÞwefind that theVirasoro constraints are
not satisfied [1]. One possibility is to work in light cone
gauge where the Virasoro constraints are automatically
satisfied. Rather than drop spacetime covariance our ap-
proach will be to make use of the spectrum generating
Del Guidice, Di Vecchia, and Fubini (DDF) operators
[24,25] which can be used to generate covariant [18,26]
physical states.

The DDF operators, Ai
n, �A

i
n, satisfy an oscillator algebra,

½Ai
n; A

j
m� ¼ n�ij�nþm;0, in direct analogy to ½�i

n; �
j
m� ¼

n�ij�nþm;0. Explicitly,

Ai
n ¼

I
}z@XieinqXðzÞ; �Ai

n ¼
I

} �z �@XieinqXð�zÞ: (3)

Indices i are transverse to the null vector q�, q2 � 0. Vertex
operators,Vðz; �zÞ, have the correct symmetries provided [27]
they are annihilated by Ln>0, �Ln>0, (L0 � 1), and ( �L0 � 1)
Virasoro generators. The DDF operators are gauge invariant,

½Ln; A
i
m� ¼ 0, and so given a physical vacuum, eipXðz;�zÞ, for

whichQeipXðz;�zÞ ffi 0 ffi Ai
n>0e

ipXðz;�zÞ, vertex operators of the
form �i...

��j...A
i�n . . . �A

j
� �n . . . e

ipXðz;�zÞ, are physical and cova-

riant provided �...i...q
i ¼ ��...i...q

i ¼ 0 and,

pq ¼ 1; p2 ¼ 2; and q2 ¼ 0: (4)

Such vertex operators are transverse to null states (see, e.g.,
[18]) and represent a complete set [26] of covariant vertex
operators.

The equivalent light cone gauge states are obtained by

[26] the mapping Ai�n ! �i�n and eipXðz;�zÞ ! jpþ; pii,
with jpþ; pii an eigenstate of p̂þ; p̂i and annihilated by
the lowering operators �i

n>0, ~�i
n>0. Here the constraints

ð@XÞ2 ¼ ð �@XÞ2 ¼ 0 imply the operator equations

pþ��
0 ¼ L?

0 � 1; pþ ~��
0 ¼ �L?

0 � 1; (5)

with L?
0 ,

�L?
0 the transverse Virasoro generators, L?

0 ¼
1
2p̂

ip̂iþN?, �L?
0 ¼ 1

2 p̂
ip̂i þ �N?, and N? ¼ P

n>0�
i�n�

i
n,

�N?¼P
n>0 ~�

i�n ~�
i
n. Recall that (L?

0 � �L?
0 ) generates

spacelike world sheet shifts. From (5) it follows that
ð��

0 � ~��
0 ÞjVi ¼ 1

pþ ðL?
0 � �L?

0 ÞjVi, and so as ��
0 and ~��

0

are the left- and right-moving momentum operators, p̂�
L

and p̂�
R , respectively, the light cone gauge state is only

invariant under shifts, ðL?
0 � �L?

0 ÞjVi ¼ 0, when the corre-
sponding eigenvalues, k�L;R, are equal.
The map between the DDF operators and the light cone

oscillators suggests that we can define a gauge invariant
‘‘position operator’’ [28],

X iðz; �zÞ� x̂i¼�p̂i lnjzj2þ i
X
n�0

1

n
ðAi

nz
�nþ �Ai

n �z
�nÞ; (6)

with ¼ Ai
0 ¼ �i

0, x̂
i ¼ q�J

i� and the angular momentum

J�� ¼ H
}zX½�@X�� � H

} �zX½� �@X��, integrals being along
a spacelike curve, jzj2 ¼ 1, and a½��� ¼ 1

2 ða�� � a��Þ.
Writing Xiðz; �zÞ ¼ XiðzÞ þ Xið�zÞ and x̂i ¼ x̂iL þ x̂iR, this
satisfies ½Ln;X

iðzÞ� ¼ 0 for all n, ½XiðzÞ; @�Xjðz0Þ� ¼
�ij�ð�� �0Þ and similarly for the antiholomorphic piece.
Furthermore, ½x̂i; p̂j� ¼ i�ij. Equation (6) is not essential
for what follows but is useful because (reasonably be-
haved) functionals F½A�, satisfy

hF½Xiðz; �zÞ � x̂i�icov ¼ hF½Xiðz; �zÞ � xi�iIc; (7)

which follows from the isomorphism of light cone (in
terms of the �i

n, ~�
i
n) and covariant states (in terms of the

Ai
n, �A

i
n), the isomorphism of the light cone gauge and gauge

invariant position operators, the isomorphism of the corre-
sponding oscillator algebras and finally the fact that the
light cone and covariant states are equivalent.
Now, a candidate vertex operator to describe bosonic

cosmic string loops is the following:

Vð
; �
Þ ¼ C exp

�X1
n¼1

1

n

nA�n

�

� exp

�X1
m¼1

1

m
�
m

�A�m

�
eipXðz;�zÞ; (8)

with ð
; �
Þ ¼ f
i
n; �


i
ng and C¼

e�
P1

n¼1
�ðð1=2nÞj
nj2þð1=2nÞj �
nj2Þ a normalization constant. The

polarization tensors 
i
n, �


i
n are such that �
nq ¼ 
nq ¼ 0.

The string theory requirements [see (a),(b) above] are
satisfied because any combination of DDF operators on the
vacuum yields covariant vertex operators which satisfy the
Virasoro constraints. The cosmic string requirements

PRL 106, 081602 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

25 FEBRUARY 2011

081602-2



(c)–(e) above are also satisfied: Vð
; �
Þ is an eigenstate of
the annihilation operator, Ai

n>0V ffi 
i
nV, and hence both

hXið�; �Þ � x̂iicov and hXið�; �Þ � xiilc on account of (7)
are identical to (1) with 
i

n, �
i
n replacing �i

n, ��
i
n. From the

standard coherent state properties it follows that choosing
the j
nj, j �
nj appropriately (large) ensures that the cosmic
string requirements are satisfied.

The normal ordered version of (8) assumes a simple
form when 
n
m ¼ �
n

�
m ¼ 0 (as appropriate for the
Burden solutions [29]), in a frame where 
np ¼ �
n

p ¼ 0 (otherwise see [16]), Vð
; �
Þ ¼ C expfP1
n¼1

1
n


nPnðzÞe�inqXðzÞg expfP1
m¼1

1
m

�
m
�Pmð�zÞe�imqXð�zÞgeipXðz;�zÞ,

with Pi
nðzÞ, �Pi

nð �zÞ related to elementary Schur polynomials,
see (12). This expression follows from bringing the DDF
operators close to the vacuum and carrying out the corre-
sponding contour integrals [16].

A series expansion of the exponentials shows that we
are in fact superimposing momentum eigenstates with (in
general) asymmetric left-right momenta, k

�
L � k

�
R ¼ wq�,

with winding number w ¼ N � �N and q2 ¼ 0. Nonzero
w and null q� implies that the underlying spacetime mani-
fold is null compactified. Any choice of q� is permitted
provided (4) and �
nq ¼ 
nq ¼ 0 are satisfied. We choose
qþ ¼ qi ¼ 0 and q� ¼ �R� which implies the identifi-
cation (with Xþ noncompact):

X� � X� þ 2	R�:

In a frame where ki ¼ 0, the constraints (4) lead to

k0 ¼ 1ffiffi
2

p ð 1
R� þ m2R�

2 Þ, kD ¼ 1ffiffi
2

p ð 1
R� � m2R�

2 Þ, with k� ¼
1
2 ðkL þ kRÞ� and mass squared m2 ¼ N þ �N � 2. The

full vertex, Vð
; �
Þ, has an effective mass given by hm2i ¼
hNi þ h �Ni � 2, with hNi ¼ P1

n¼1 j
nj2 and h �Ni ¼P1
n¼1 j �
nj2. There are similar expressions to k0, kD for

hk0i, hkDi with hm2i replacing m2. Note that (i) the mass
spectrum is as in the noncompact case, m2 ¼ N þ �N � 2,
but with N not necessarily equal to �N, (ii) the string only
fluctuates in directions transverse to the null direction (as

nq ¼ 0) implying that the various geometrical features
of the string (such as cusps) are not affected by the com-
pactification, (iii) hX�ð�þ 2	; �Þi ¼ hX�ð�; �Þi for � ¼
ð�; iÞ when hNi ¼ h �Ni, implying that classically compact
and noncompact X� are indistinguishable. At the quantum
level, scattering amplitudes are expected to be affected by
the lightlike compactification in general and will, in par-
ticular, contain additional terms when compared to the
corresponding amplitude computations involving the pro-
jected states (defined below). Quantizing on a null compact
background is known as discrete light cone quantization
(DLCQ) [30], and is a crucial component in theM (matrix)
theory to string theory correspondence [31].

Note that in light cone gauge, hXiilc ¼ Xi
cl, for arbitrary

classical solutions. In covariant gauge, however, hXiicov �
Xi
cl, as the covariant vertex (8) is still invariant under shifts.

Although the above states (8) satisfy the requirements
(a)–(e), the necessity of a null-compactified spacetime
manifold is perhaps too constraining, because this breaks

four-dimensional Lorentz invariance. When the spacetime
background is not compactified in a lightlike direction,
only states with k�L ¼ k�R can propagate consistently. We
therefore next discuss the construction of cosmic strings in
noncompact spacetimes.

Define a projection operator, Gw ¼ R
2	
0 }seisðŴ�wÞ,

with Ŵ ¼ p̂þ
L p̂

�
L � p̂þ

R p̂
�
R , and p̂

�
L ¼ H

}z@X�, p̂
�
R ¼

�H
} �z �@X�. Ŵ is the null winding number operator.

This satisfies GnGm ¼ �n;mGn and when applied to arbi-

trary vertices projects out all states in the underlying
Hilbert space except for those with null winding number

w. When there are no transverse compact directions, Ŵ ¼
�pðp̂L � p̂RÞ, with p� defined in (4). Covariant vertex
operators in noncompact spacetimes are therefore given by
V0ð
; �
Þ ffi G0Vð
; �
Þ. With Vð
; �
Þ as given in (8), we
commute G0 through the DDF operators and find that

V0ð
; �
Þ ¼ C
 �


Z 2	

0
}s exp

�X1
n¼1

1

n
�nðsÞA�n

�

� exp

�X1
m¼1

1

m
��mðsÞ �A�m

�
eipXðz;�zÞ; (9)

with �inðsÞ � 
i
ne

ins, ��inðsÞ � �
i
ne

�ins, and the normaliza-

tion constant C
 �
 ¼ ½R2	
0 }s expðP1

n¼1
1
n j
nj2eins þ

1
n j �
nj2e�insÞ��1=2. This leads us to suggest that the resulting

vertex operators V0ð
; �
Þ represent arbitrary classical loops
in noncompact spacetime. One can also show that this is a
coherent state, the definition of which is given in [15] (with
unit operator 1 ¼ G0). The normal ordered version of
V0ð
; �
Þ can be derived from the normal ordered expres-
sion Vð
; �
Þ [as given below (8)] by computing the opera-
tor product G0Vð
; �
Þ. One finds

V0ð
; �
Þ ¼ C
 �


Z 2	

0
}s exp

�X1
n¼1

1

n
�nðsÞPi

nðzÞe�inqXðzÞ
�

� exp

�X1
m¼1

1

m
��mðsÞ �Pi

mð�zÞe�imqXð �zÞ
�
eipXðz;�zÞ:

Having projected out the null winding states world sheet
translation invariance is restored and, according to the
above discussion, the condition for classicality hXi ¼ Xcl

in (d) is replaced by (2). Given that we know the classical
solution in light cone gauge, see (1), we establish (2) for the
projected states in light cone gauge by making use of (7).
Denoting states with null winding w by Vwð
; �
Þ ffi
GwVð
; �
Þ one can show that (2) is satisfied by making
use of Eqs. (1) and (6), with Ai

njV0i ¼ 
i
njVni, �Ai

njV0i ¼
�
i
njV�ni (n > 0), and hVnjVmi ¼ �n;m, which follow from

the DDF operator commutation relations. We learn that (9)
has a classical interpretation given by (1) with ð�; ��Þ ¼
ð
; �
Þ and ki ¼ pi. Furthermore, it is not too hard to show
[16] that also the angularmomentum J�� defined below (6),
of the states (9) matches the corresponding classical ex-
pression. J�� is gauge invariant and so we expect to find
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hJ��icov ¼ hJ��ilc ¼ J��
cl ; (10)

which is indeed the case, with the result
P

n>0
2
n Imð
�i

n 

j
n þ

�
�i
n
�
j
nÞ for the transverse directions and a slightly more

complicated expression for the longitudinal components,
see [16].

To summarize, we have constructed closed string coher-
ent state vertex operators (in covariant and light cone
gauge) and have shown how to map these to arbitrary
classical solutions. These new vertex operators may be
used to study the cosmic F-string evolution, taking gravi-
tational backreaction into account which is almost always
neglected in the classical computations. It can also be used
to check whether gravitational radiation is indeed the
primary decay channel, and if so what the frequency spec-
trum is. An example currently under investigation is the
graviton emission amplitude from a coherent state, which
(due to the optical theorem) can be extracted from the
imaginary part of the forward scattering u-channel ampli-

tude, ImhVy
0 V

y
g VgV0i. Here Vg is the graviton vertex op-

erator (or any other massless or massive vertex), and V0 a
coherent state (9).

Appendix.—Elementary Schur polynomials are defined
[32] by the generating series,

P1
m¼0 Smða1; . . . ; amÞzm ¼

exp
P1

n¼1 anz
n; equivalently,

Smða1; . . . ; amÞ ¼ �i
I
0
}ww�m�1 exp

Xm
s¼1

asw
s; (11)

with }w � dw=ð2	Þ, S0 ¼ 1, and Sm<0 ¼ 0. When as ¼
� 1

s! inq@
sXðzÞ, with q� defined in (4) wewrite Smðnq; zÞ �

Smða1; . . . ; amÞ. The following Taylor series is useful,

e�inqXðzÞ ¼ P1
a¼0 z

aSaðnq; 0Þe�inqXð0Þ. The polynomials

PnðzÞ, �Pnð�zÞ that appear in normal ordered covariant vertex
operators are then defined by

Pi
nðzÞ ¼

X1
‘¼1

i

ð‘� 1Þ!@
‘XiðzÞSn�‘ðnq; zÞ; (12)

with a similar expression for �Pi
nð�zÞ, obtained from (12) by

the replacement @sXðzÞ ! �@sXð�zÞ.
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