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We study the decoherence of polarization-entangled photon pairs subject to the effects of polarization

mode dispersion, the chief polarization decoherence mechanism in optical fibers. We show that fiber

propagation reveals an intriguing interplay between the concepts of entanglement sudden death,

decoherence-free subspaces, and nonlocality. We define the boundaries in which entanglement-based

quantum communications protocols relying on fiber propagation can be applied.
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Entanglement between particles is a fundamental feature
of quantum physics. Just as fundamental is the phenome-
non of decoherence that takes place when the entangled
quantum system interacts with the environment. One of the
most intriguing recent discoveries related to decoherence is
the phenomenon of entanglement sudden death (ESD)
[1,2]. It manifests itself in an abrupt disappearance of
entanglement once the interaction with the environment
reaches a certain threshold [3–5]. Beyond the interest that
it attracts as a fundamental physical phenomenon, deco-
herence plays a central role in quantum communications.
The security of recent quantum key distribution protocols
explicitly relies on the nonlocal properties of entangle-
ment, quantified in terms of the violation of a Bell-type
inequality [6–8]. Therefore, establishing the relation be-
tween the violation of nonlocality and ESD, which is very
interesting from a standpoint of basic physics, has a poten-
tially large impact on the new area of quantum
communications.

A configuration that provides an excellent platform for
the controlled study of decoherence is that of polarization-
entangled photon pairs, distributed over optical fibers. In
this scheme the main source of decoherence is the residual
optical birefringence randomly accumulating along the
fiber. While an alternative entanglement scheme, insensi-
tive to birefringence, has been proposed [9,10], the ease
with which light polarization can be manipulated using
standard instrumentation leaves polarization entanglement
the configuration of choice in many situations [11].
Moreover, numerous sources of polarization-entangled
photons suitable for use with standard fibers have recently
become available [12]. Hence, understanding the relation
between nonlocality and ESD as well as the ultimate limits
imposed by fiber birefringence on the distribution of
polarization-entangled photons in fibers is a problem of
utmost importance.

The fact that optical birefringence is a major polariza-
tion decoherence mechanism has been known for a while.
Indeed birefringent crystals have been used extensively for

the creation and manipulation of special quantum states,
such as the maximally entangled mixed states [13,14] or
Werner states [13,15]. Similarly, birefringent crystals have
also been used for the controlled demonstration of
decoherence-free subspaces [16,17]. Yet, the arbitrary bi-
refringence characterizing fiber-optic transmission pro-
duces a previously unobserved combination of physical
effects.
The accumulation of randomly varying birefringence in

fibers leads to a phenomenon known by the name of
polarization mode dispersion (PMD) [18]. Since the analy-
sis of the general case of PMD is quite cumbersome, we
limit ourselves to the simplest regime of operation in which
the optical bandwidth of the photons is small in compari-
son with the bandwidth over which PMD decorrelates [19].
In this regime, without losing the essence of the problem,
the overall effect of PMD resembles that of pure birefrin-
gence in the sense that it causes an incident pulse to split
into two orthogonally polarized components delayed rela-
tive to each other [18]. The polarization states of these two
components are known as the principal states of polariza-
tion (PSP) and the delay between them is called the dif-
ferential group delay (DGD).
In contrast to the controlled environment of [13–17],

both the PSP and the DGD of real fibers vary stochastically
in time. Since typical time constants characterizing the
decorrelation of PMD in optical fibers are as long as hours,
days, and sometimes months [20], PMD evolution can be
considered adiabatic in the context of quantum communi-
cations protocols. Thus the density matrix describing
the quantum state needs to be evaluated as a function of
the arbitrary values of the instantaneous PMD. As a con-
sequence, the parameters of interest obtained from the so-
evaluated density matrix are also PMD dependent.
The temporal statistics for those parameters could be in
principle determined by application of the proper PMD
statistics. An approach, in which the randomness of
PMD is accounted for in the density matrix itself [21],
implicitly assumes ultrafast PMD dynamics and leads to
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fundamentally different results. This previously unstudied
reality produces important consequences to the dynamics
of decoherence between polarization-entangled photons.

In this Letter we formulate a quantitative approach to
studying PMD-induced disentanglement. We consider the
evolution of an arbitrary two-photon state maximally en-
tangled in polarization as each photon propagates through a
fiber with PMD. Our studies demonstrate that the unequal
and increasing differential delays in both arms always lead
to entanglement sudden death [1,2] for all but two special
PSPs orientations. That is, our channel causes an abrupt
drop to zero in concurrencewhile a single-photon subjected
to the same environment depolarizes asymptotically.
Contrary to that, when both delays are sufficiently close
in value there exists a range of PSP orientations for which
concurrence does not vanish. This is related to the existence
of decoherence-free subspaces and offers an opportunity
for nonlocal PMD compensation. Finally, when only one
photon experiences PMD, the concurrence decays gradu-
ally for every PSP orientation. Besides concurrence, we
calculate the S parameter of the Clauser-Horne-Shimony-
Holt Bell’s inequality. Comparing the loss of entanglement
(concurrence C ¼ 0) and violation of locality (S > 2) we
discover an intriguing empirical relation between them.

We assume a source in which a pair of polarization-
entangled photons is generated either via spontaneous
parametric down conversion [22], or by using four-wave
mixing [23,24]. In either case, the quantum state of the
generated photon pair can be expressed as

jc i ¼
Z d!

2�
~fð!Þj!;�!i � juA; uBi þ ei�ju0A; u0Biffiffiffi

2
p ; (1)

where the left-hand side of the tensor product represents
the frequency waveform, whereas the right-hand side rep-
resents polarization modes. The frequency variable ! de-
notes the offset from the central frequency, which is equal
to the pump frequency in sources relying on four-wave
mixing and to half the pump frequency in sources based on
spontaneous parametric down conversion. The function
~fð!Þ represents the effect of phase matching as well
as the possible effects of filters, as we shall see below.
Notice that normalization of the state jc i implies thatR
d!j~fð!Þj2 ¼ 2�T�1, with T being the integration time

of the detectors used in the setup. In what follows, the state
(1) will be referred to as the input state of the system,
which consists of the two optical paths that lead the en-
tangled photons from the source of entanglement towards
its users, conventionally referred to as Alice and Bob. The
terms uA;B and u0A;B are the Jones vectors that correspond to

the excited polarization states of Alice’s and Bob’s pho-
tons, respectively. We use primes to denote orthogonality
in polarization space, so that uA;B � u0A;B ¼ 0. The phase

factor � is introduced for consistency with the experimen-
tal generation of polarization-entangled photon pairs [23].
Notice that the frequency dependent part in (1) can be
reexpressed as

Z d!

2�
~fð!Þj!;�!i ¼

ZZ
dtAdtBfðtA � tBÞjtA; tBi; (2)

with fð�Þ being the inverse Fourier transform of ~fð!Þ. As
can be deduced from the form of Eq. (2), jfð�Þj2 is pro-
portional to the probability density function that Bob’s
photon precedes Alice’s photon (or vice versa) by �.
For brevity, we will denote the polarization dependent

part in the tensor product (1) by jc pi ¼ ½juA; uBi þ
ei�ju0A; u0Bi�=

ffiffiffi
2

p
, whereas the expression in Eq. (2) will

be shortly denoted as jfðtA � tBÞi. The overall state is
then expressed as jc i ¼ jfðtA � tBÞi � jc pi.
Let us now represent the state jc i in terms of the

principal states of the PMD in the two arms. We denote
by fsA; s0Ag and fsB; s0Bg the pairs of Jones vectors that
correspond to the PSP along the paths of photons A and
B, respectively. We now represent jc pi in the basis of the

PSP modes as follows:

jc pi ¼ �1ðjsA; sBi þ ei~�1 js0A; s0BiÞ=
ffiffiffi
2

p þ �2ðjsA; s0Bi
� ei~�2 js0A; sBiÞ=

ffiffiffi
2

p
; (3)

where the coefficients �1 and �2 are given by

�1 ¼ ðsA � uAÞðsB � uBÞ þ ei�ðsA � u0AÞðsB � u0BÞ; (4)

�2 ¼ ðsA � uAÞðs0B � uBÞ þ ei�ðsA � u0AÞðs0B � u0BÞ; (5)

and where ~�i is defined through the relation �i ¼
j�ij expðið�� ~�iÞ=2Þ. Also, note that, as is implied by
state normalization, j�1j2 þ j�2j2 ¼ 1. The quantity
j�1j2 is related to the alignment between the input two-
photon state (1) and the PSP. Thus, for example, in the case
of uA ¼ sA and uB ¼ sB, the value of j�1j2 is unity. In the
presence of PMD the arrival time of the A photon is
delayed by �A=2 in the sA polarization and advanced by
the same amount in the s0A polarization, and the B photon
undergoes a similar process. Therefore, the output state,
i.e., the two-photon state after propagating through media
with PMD, can be expressed as

jc outi¼�1ffiffiffi
2

p
��������f

�
tA� tB��A��B

2

��
�jsA;sBi

þ�2ffiffiffi
2

p
��������f

�
tA� tB��Aþ�B

2

��
�jsA;s0Bi

���
2e

i~�2ffiffiffi
2

p
��������f

�
tA� tBþ�Aþ�B

2

��
�js0A;sBi

þ��
1e

i~�1ffiffiffi
2

p
��������f

�
tA� tBþ�A��B

2

��
�js0A;s0Bi: (6)

The density matrix that characterizes the detected field is
given by � ¼ R

dt0Adt
0
Bht0A; t0Bjc outihc outjt0A; t0Bi, where

tracing over the time modes is performed in order to
account for the fact that the photo-detection process is
not sensitive to the photon’s time of arrival (within the
detector’s integration window). The elements of the result-
ing density matrix, establishing the correspondence
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ðsA; sBÞ $ 1, ðs0A; sBÞ $ 2, ðsA; s0BÞ $ 3, and ðs0A; s0BÞ $ 4
are then given by

�11 ¼ �44 ¼ j�1j2=2; �22 ¼ �33 ¼ j�2j2=2;
�31 ¼ ��42 ¼ ��

1�2Rfð�BÞ=2;
�21 ¼ ��43 ¼ ���

1�
�
2e

i�Rfð�AÞ=2;
�41 ¼ ð��

1Þ2ei�Rfð�A � �BÞ=2;
�23 ¼ �ð��

2Þ2ei�Rfð�A þ �BÞ=2;

(7)

where Rfð�Þ ¼ T
R
dtf�ðtÞfðtþ �Þ is the autocorrelation

function of fðtÞ, normalized such that Rfð0Þ ¼ 1. The

function ~fð!Þ which defines the frequency contents of
the two generated photons accounts for the phase-matching
spectrum, as well as for filtering applied to the two gen-

erated photons. In this case ~fð!Þ¼ ~fpmð!ÞHAð!ÞHBð�!Þ,
where HAð!Þ and HBð!Þ denote the transfer functions of

Alice’s and Bob’s filters, respectively, and where ~fpmð!Þ
represents the phase-matching spectrum. In most applica-
tions, the filters are much narrower than the phase-

matching spectrum, in which case ~fpmð!Þ can be replaced

by a constant, such that ~fð!Þ / HAð!ÞHBð�!Þ. Notice
that the effect of PMD scales with the width of the auto-
correlation function Rfð�Þ, which is in turn determined by

the overlap bandwidth of Alice’s and Bob’s filters, namely,
by the width of jHAð!ÞHBð�!Þj2. For illustrative pur-
poses, in all the numerical examples considered in what
follows, we will assume that jHAð!Þj2 and jHBð!Þj2 are
Gaussian functions of root mean square bandwidth B and
central frequencies !A and !B ¼ �!A, respectively.

We now turn to the characterization of the degree of
entanglement of the PMD-affected two-photon state. In
the presence of PMD, tracing over the time of arrival puts
the system in a partially mixed state. The extent of this
process can be quantified with the help of several proposed
entanglement metrics [25–27]. We choose to calculate
purity, concurrence [27], and Bell’s S parameter, thus as-
sessing the largest possible violation of Bell’s inequality in
the Clauser-Horne-Shimony-Holt (CHSH) definition [28].
Because the individual photon states are maximally mixed,
the two-photon density matrix can be reduced to a Bell-
diagonal form by a proper change of basis [29]. This
enables a fully analytical evaluation of C and S. Note that
a Bell-diagonal matrix is defined by three real parameters
only. In the case of PMD they are �A, �B, and j�1j2 and the
functional dependence of C and S on them is given in [29].

In the simplest case of PMD present in only one of the
two fibers, as described, for example, by �B ¼ 0, the con-
currence is given by C ¼ jRfð�AÞj; in this case the concur-
rence is independent of the PSP orientation and can only
decay asymptotically with �A. Correspondingly, the S pa-
rameter acquires the maximum value compatible with such

concurrence, that is S ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

p
[30], indicating uncon-

ditional violation of Bell’s inequality. Note that the two
cases j�1j ¼ 1 and j�1j ¼ 0, where concurrence simplifies

to C ¼ jRfð�A � �BÞj and C ¼ jRfð�A þ �BÞj, respec-

tively, are equivalent to that of single-arm PMD, with cor-
responding nonzero DGDs equal to �A��B and �Aþ�B.
Remarkably, for �A ¼ �B and j�1j ¼ 1, the concurrence is
unity, regardless of the DGDmagnitude. This result is quite
interesting and it is directly related to the concept of
decoherence-free subspaces [16,17]. In this situation the
output state, when expressed in the basis of the PSP, is a
superposition of a state in which both photons are delayed,
with a state in which they are both advanced [see Eq. (3)],
such that they reach the detectors simultaneously. Since in
this state, knowledge of the photon’s times of arrival dis-
closes no information on their polarization states, tracing
out time involves no loss of information. Decoherence-free
subspaces would not be allowed if PMDdynamics were fast
on the scale of measurements, as assumed in [21].
The dependence of the two-photon state decoherence on

the PMD parameters in the general case is more cumber-
some, as it is governed by the two DGD values �A and �B
and by the PSP orientation, accounted for by j�1j. For
illustrative purposes, we plot in Fig. 1 the concurrence as a
function of �A (normalized to B�1) and j�1j2 for two
different settings of �B, so as to describe PMD effects
for the most relevant realizations of PMD parameters.
In Fig. 1(a) we plot the concurrence for the case of iden-
tical DGDs, �B ¼ �A, whereas in Fig. 1(b) the value of �B
is fixed and equal to 1:7B�1. The range of values for which
entanglement disappears entirely (i.e., C ¼ 0) is repre-
sented by the flat part of the surface (red color online).
The rest of the surface (green color online) corresponds to
settings in which entanglement exists (i.e., C> 0), with
S > 2 in the lighter shaded region, and S � 2 in the darker
shaded region. In the case where the DGD values are equal
[Fig. 1(a)], the concurrence approaches unity when
j�1j2 ! 1. That is because in this situation the input state
is given by the first term in Eq. (3), and it is not affected by
the loss of time of arrival information. In the opposite limit,
when j�1j ¼ 0, the concurrence is given by C ¼ jRfð2�AÞj
and reduces towards zero asymptotically for large DGD
values. Figure 1(b) also illustrates that concurrence can be
unity only when the DGD values in the two arms are equal.

(a) (b)

FIG. 1 (color online). Concurrence versus �A and j�1j2. In
(a) �B ¼ �A, whereas in (b) �B ’ 1:7B�1. Lighter shaded (light
green online): S > 2. Darker shaded (dark green online): S < 2.
Flat region (red online): C ¼ 0 and S < 2.
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The most interesting feature in Fig. 1 is the abrupt
transition of the concurrence to zero when either �A or
j�1j2 are varied continuously. The abrupt decay of con-
currence is contrasted with the asymptotic decoherence
that would be experienced by a single photon if it evolved
in the same environment. Indeed, the purity of a polarized
single-photon pulse characterized by a Jones vector u and a
time-mode distribution gðtÞ, transmitted through a fiber
with DGD � and PSP s, is given by p ¼ 1� 2ju � sj2
ð1� ju � sj2Þ½1� jRgð�Þj2�, with Rgð�Þ the autocorrelation
function of gðtÞ. This is a manifestation of the entangle-
ment sudden death (ESD) that has been previously reported
in other physical systems [1–5].

In general, PSP orientation in optical fibers varies faster
than the DGD, resulting in a uniform distribution of the
parameter j�1j2 between 0 and 1. For each given combina-
tion of �A and �B, we evaluate the fraction of the interval
between 0 and 1 in which ESD occurs. This quantity, which
can be interpreted as the probability of ESD (conditioned
on the DGD values) is illustrated in Fig. 2. Note the exis-
tence of a completely white region that shows the range of
DGD values in which entanglement does not disappear for
any value of j�1j2. In contrast to that, the darker tones mark
areas for which ESD occurs for some range of j�1j2. The
color progressively turns dark for highly differing DGD
values. On the other hand, when increasing DGDs remain
nearly equal, the probability of ESD is about 0.5 [29].

Many applications involving entanglement rely directly
on the violation of Bell’s inequality [7,8] and, therefore, we
compute the maximum value of the CHSH S—parameter
[28] for the density matrix Eq. (7) [31]. In Fig. 1, the range
of parameters in which S > 2—meaning that the CHSH
inequality is violated—is represented by the lighter shaded
part of the surface, whereas the darker shaded part of the
surface represents states in which C> 0, but there is no
violation of the CHSH inequality (S � 2). The thick gray
line in Fig. 2 also marks the S ¼ 2 boundary. Below and to
the left of this line S > 2 for all j�1j2 values, but to its right
Smay be smaller than 2 for some relative PSP orientations.
Intriguingly, this nonlocality boundary (thick gray line)
nearly perfectly reproduces the boundary to the ESD-free

region (the white area) if the scale on both axes is stretched
by a factor of 1.5.
To conclude, we have carried out what we believe to be

the first quantitative analysis of the decoherence of
polarization-entangled photons propagating in optical fi-
bers. Our study shows that PMD leads to entanglement
sudden death in all but a well-defined restricted set of
realizations of fiber birefringence. In addition, we demon-
strated how decoherence-free subspaces can be reached via
nonlocal PMD compensation. The ultimate limits imposed
by fiber birefringence to applications based on nonlocal
properties of polarization entanglement were shown to be
intriguingly related with the phenomenon of entanglement
sudden death.
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FIG. 2 (color online). ESD probability (see text) versus �A and
�B normalized to B�1. The gray line is the boundary S ¼ 2.
Below and to the left of the gray line S > 2 for all values of
j�1j2, whereas to its right S < 2 for some range of j�1j2.
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