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We present a lower bound for the free energy of a quantum many-body system at finite temperature.

This lower bound is expressed as a convex optimization problem with linear constraints, and is derived

using strong subadditivity of von Neumann entropy and a relaxation of the consistency condition of local

density operators. The dual to this minimization problem leads to a set of quantum belief propagation

equations, thus providing a firm theoretical foundation to that approach. The minimization problem is

numerically tractable, and we find good agreement with quantum Monte Carlo calculations for spin- 12
Heisenberg antiferromagnet in two dimensions. This lower bound complements other variational upper

bounds. We discuss applications to Hamiltonian complexity theory and give a generalization of the

structure theorem of [P. Hayden et al., Commun. Math. Phys. 246, 359 (2004).] to trees in an appendix.
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Describing the properties of a local quantum system
is perhaps the central problem of theoretical physics.
However, the exponential growth of the Hilbert space
with system size makes it prohibitive to even write down
the state of a system with even a modest number of sites.
For this reason, variational methods, such as matrix prod-
uct states used in density matrix renormalization group
[1–4] and their higher dimensional generalizations [5,6],
are a central tool, describing a state with a small number
of parameters, allowing a practical optimization of the
energy.

All these methods provide an upper bound to the free
energy and the quality of the approximation cannot be
assessed directly. In this Letter, we present a lower bound
to the free energy that nicely complements variational
approaches. We use strong subadditivity (SSA) of
von Neumann entropy [7] to approximate the system’s
entropy by a local quantity. This approximation is exact
when the system is a Markov network [8]—i.e., when its
long-range correlations arise due to correlations over
shorter distances—but in general provides a lower bound
to the true entropy. By relaxing the consistency constraints
on the reduced density operators of the systems, we find a
formula for the free-energy expressed as a convex minimi-
zation problem with linear constraints.

Our formula for the free energy is similar to the Bethe
free energy [9]—and its generalization by Kikuchi [10]—
but differs by a crucial ordering of the lattice sites. This
distinction is responsible for the lower bound obtained
by our method, in contrast to Bethe’s and Kikuchi’s
approximations which are uncontrolled. The dual of the
minimization problem provides a set of quantum belief
propagation equations similar to those presented in
[8,11–13]. This connection provides a solid theoretical
foundation to understand the success and limitations of

quantum belief propagation. Similar connections [14]
and algorithms [15] have been found in the classical
setting.
Markov entropy decomposition.—Consider a lattice ofN

spins that we label from 1 to N. The labeling of the sites
chosen will determine the order in which we apply our
procedure later. The Hamiltonian of the system is a sum
of geometrically local terms H ¼ P

XhX where X labels
subsets of f1; . . . ; Ng and locality means that hX ¼ 0 when
the radius of X is larger than some constant w. Given
the density matrix � of the system, we can compute
the average energy Eð�Þ ¼ Trð�HÞ ¼ P

XTrð�XhXÞ from
knowledge of only the reduced density matrices �X �
Tr �X� on small local regions, that can be obtained from
the partial trace of � over the complement �X of X.
At finite temperature T, we are interested in the system’s

free energy FðTÞ � min�fEð�Þ � TSð�Þg. Unlike the en-

ergy, the entropy Sð�Þ � �Trð� log�Þ cannot be evaluated
in general from knowledge of only the reduced density
matrices �X over regions X of finite radius. We define an
approximate way of doing this evaluation, following the
derivation of [15] in the classical setting. For every site k,
define a subset of sites N k consisting of ‘‘neighboring’’
sites. There is no unique prescription for the choice ofN k,
but it is useful to imagine that they consist of a set of sites
located within a finite distance from k. With trivial ma-
nipulations, we can rewrite the entropy of the system in the
form of an ‘‘entropy chain rule’’ Sð�Þ ¼ P

N
k¼1 Sðkjf<kgÞ

where the conditional entropy of a region X given region
Y is SðXjYÞ � SðX [ YÞ � SðYÞ, the entropy of any region
X is denoted SðXÞ � Sð�XÞ ¼ �Trð�X log�XÞ, and we use
the notation f<kg ¼ f1; 2; . . . ; k� 1g.
Quantum entropy S obeys SSA [7], which implies

Sðkjf<kgÞ � Sðkjf<kg \N kÞ ¼ SðkjMkÞ; (1)
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where we define the ‘‘Markov shield’’ of site k by Mk ¼
f<kg \N k, see Fig. 1. We can define the Markov entropy
SMð�Þ � P

N
k¼1 SðkjMkÞ which upper bounds the system’s

entropy. Because each term in that sum can be computed
from the reduced density matrices on site k and its Markov
shield, the Markov entropy, unlike the entropy S, is suitable
for direct numerical calculations.

Returning to the free-energy calculation, we now have
the bound FðTÞ � FMðTÞ � min�fEð�Þ � TSMð�Þg. The
Markov free energy FM of any given state is equal to its
true free energy if SSA is saturated with the given choice of
Markov shields as shown in Fig. 1. Because both E and SM
can be evaluated from the density matrix of constant-size
regions X, we can express FMð�Þ ¼ Eð�Þ � TSMð�Þ as a
function of some set of reduced density operators f�Xg
and write FMðTÞ ¼ minf�Xg2�FMðf�XgÞ, where � denotes

the set of consistent reduced density matrices that are
all obtainable from some global density matrix �, i.e.,
� � ff�Xg: 9�; �X ¼ Tr �X�; 8 Xg.

Unfortunately, verifying consistency of a set of reduced
density matrices f�Xg is a difficult problem, it is complete
for the quantum Merlin-Arthur complexity class [16], so it
is very unlikely that � can be characterized efficiently.
Thus, we will make one more approximation and enlarge

the set � to the set ~� of all locally consistent reduced
density matrices that agree on overlapping regions, i.e.,
~� � f½�X�: TrX\Y�X ¼ TrX\Y�Y; 8 ðX; YÞg. Since all re-
duced density matrices in� are derived from one global �,

it should be clear that � � ~�, and as a consequence

FMEDðTÞ � min
f�Xg2 ~�

FMðf�XgÞ � FMðTÞ � FðTÞ: (2)

Equation (2) defines our numerical method which we
call the Markov entropy decomposition (MED) scheme.
The Markov free energy FMðf�XgÞ to be minimized to
evaluate FMEDðTÞ is a convex function [17] over the cone
of semipositive operators f�Xg subject to some linear con-

straints specified in the definition of ~�. Thus, it is suitable
for numerical optimization. There is no unique prescription
for the choice ofMk, but given two choices, the one which

leads to the higher free energy is to be preferred due to the
variational nature of our approach.
Numerical results on translationally invariant sys-

tems.—The procedure simplifies greatly when applied to
translationally invariant systems. If we assume that all
density matrices �X are related by translational symmetry,
the Markov free-energy is a function of a single density
matrix. We have numerically investigated this method with
a spin- 12 antiferromagnetic Heisenberg model on an infinite

two-dimensional square lattice. The correlation length di-
verges exponentially in 1=T [18], and at low temperatures
it becomes much larger than the size of our shield, thus
providing a hard-case study. However, we expect on physi-
cal grounds that those long-range correlations will be
Markovian because different Nèel-like orders are almost
perfectly distinguishable over sufficiently large regions.
For the same reason, the fact that the low energy states
presumably break translational symmetry should not cause
a problem because a mixture over the different symmetry
breaking sectors restores the symmetry and does not
change the value of FMED. We have used a Markov shield
of size 7 and 10, so that the main computational task of
our program was exact diagonalization of (nonsparse)
matrices of size 28 and 211, respectively. Figure 2 compares
our results to other methods.
The MED free energy with the 10-site shield is in

excellent agreement with quantum Monte Carlo (QMC)
calculations for the entire temperature range. This agree-
ment with QMC calculations is better than the one obtained
from exact diagonalization (ED) of a 4� 4 lattice. In fact,
those diagonalization results are very well approximated
by MED with a 7-site shield. Here we see the biggest
advantage of MED: because of the constraints imposed
on the minimization, the results converge to the thermody-
namic limit faster than ED.

FIG. 1 (color online). (a) The Marrkov shield (shown in blue)
Mk is the intersection of the neighborhood (green) of k and the
sites preceding k (orange). (b) The entanglement (represented
by black lines) between site k and the preceding sites is all
mediated by the Markov shield: the state of the first k sites can be
constructed by adding one extra spin to the state of the first
k� 1 site and coupling it only to the sites of the shield [19]. This
turns inequality Eq. (1) into an equality. (c) There is direct
entanglement between site k and the sites preceding k, so the
Markov entropy is not equal to the true entropy, but it is an upper
bound.

FIG. 2 (color online). Numerical results obtained from MED
for the spin- 12 Heisenberg antiferromagnet on a 2D square lattice.

The energy (green) and free energy (blue) are obtained for a
7- and 10-site Markov shield, of shape illustrated in the upper
left corner. The energy is evaluated as Trðh�2Þ from the two-
body state �2 minimizing Eq. (2). Results are compared to exact
diagonalization of a 4� 4 lattice and quantum Monte Carlo
calculations. The crossing of energy and free-energy curve
(negative entropy, 7-site shield) lower bounds to the ground
energy.
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Note that FðTÞ is a monotonically decreasing function of
T, equal to the ground-state energy E0 at T ¼ 0. Moreover,
FMEDðTÞ � FðTÞ for all T. It follows thatmaxTFMEDðTÞ �
maxTFðTÞ ¼ E0. This maximum occurs at the point where
the Markov entropy density SMðf�XgÞ goes negative, and
FMEDðTÞ ¼ EMEDðTÞ. The crossing point of FMED and
EMED obtained with the 7-site shield gives a lower bound
E0 � �0:7062 . . . to the true ground-state energy of the
system.

We have used this technique to lower bound the ground-
state energy of the one-dimensional model. Results ob-
tained with a k-site neighborhood are in good agreement
with ED results on a chain of length roughly 2k (with
periodic boundary conditions). This can be understood
from the fact that the ground-state entropy of a block of
‘ sites, Sð‘Þ, is an increasing function of ‘ for ‘ � k, and
then decreases to reach 0 when ‘ ¼ 2k since the entire
system is in a pure state. Thus, enforcing a positive Markov
entropy density SM ¼ SðkÞ � Sðk� 1Þ compels the system
in our simulations to behave as it were on a lattice of size
2k, even though we are manipulating states of k spins,
providing some heuristic explanation for the improved
convergence, compared to ED, seen above.

All these lower bounds on the ground-state energy and
the lower bounds on the free energy, would be rigorous if
the convex optimization problem were solved exactly.
However, all our results are subject to numerical error.
We used fairly elementary minimization methods (conju-
gate gradient) and more elaborate techniques that exploit
the special features of this problem are likely to improve
the results; we hope that this Letter will stimulate research
in this direction. Numerical fluctuations are most promi-
nent in the energy, while the free-energy curve is rather
smooth. The fluctuations are largest near the specific heat
peak; to understand this, consider the free energy E� TSM
as a function of E, assuming for simplicity that SM equals
the correct entropy SðEÞ. At a minimum of F, @F@E ¼ 0, and
@2F
@E2 ¼ 1

Tc and so for large c, the basin around the minimum

is shallow, increasing numerical error. We now describe
an alternate approach, a dual problem, which connects to
quantum belief propagation. If this dual problem could be
turned into a variational dual problem (a concave function
whose maximum equals the minimum of the Markov free
energy), it would provide mathematically rigorous lower
bounds on F.

Dual problem: quantum belief propagation.—Consider a
length-N spin chain and define density matrices �k and �k

associated to segments k� n to k and k� n to k� 1,
respectively. In this case, the minimization problem de-
fined at Eq. (2) using a Markov shield containing the n sites

preceding site k becomes
P

N
k¼nðTrf�k½Ĥk þ log�k � I �

Ak � Bk � I þ �k�g � Trf�k½log�k � Ak�1 � Bk þ �k�gÞ
where for k ¼ n; . . .N, the matrices Ak and Bk and the
scalars �k and �k are Lagrange multipliers used to enforce
Trk�n�k ¼ �kþ1, Trk�k ¼ �k, and the trace normalization
of �k and �k, respectively, and AN ¼ 0. This is simply

Eq. (2) where we introduced an additional variable �k

equal to the partial trace of �k. Above, Ĥk is the part of
the Hamiltonian supported on sites k to kþ n properly
weighted to avoid double counting, and we have set
temperature T ¼ 1 to avoid cluttering equations. Taking

derivatives with respect to �k and �k yields Ĥk þ log�k �
IAk � BkI þ�0

k ¼ 0 and log�k � Ak�1 � Bk þ �0
k ¼ 0

where �0
k ¼ �k þ 1 and �0

k ¼ �k þ 1, and we have

dropped the � symbols. These equations, together with
the constraints imposed on the reduced density matrices,
give a set of self-consistent mean-field equations

Ak�1 ¼ logðTrk�kÞ � Bk þ �0
k

¼ logðTrke�ĤkþIAkþBkI��0
kÞ � Bk þ �0

k (3)

Bkþ1 ¼ logðTrk�n�kÞ � Ak þ �0
kþ1

¼ logðTrk�ne
�ĤkþIAkþBkI��0

kÞ � Ak þ �0
kþ1: (4)

One can show that any solution to these equations is a
minimum of the Markov free energy Eq. (2). Because
this function is convex, the solution to Eqs. (3) and (4) is
unique.
We can conceive an iterative procedure to approach

solutions to Eqs. (3) and (4). Starting from an initial guess
for the Ak and Bk, we obtain new guesses by inserting
these values into Eqs. (3) and (4) which provides new
values and recurse. Renaming Ak�1 ¼ logmk!k�1 and
Bkþ1 ¼ logmk!kþ1, we recognize Eqs. (3) and (4) as al-
most the belief propagation prescription of [8,12]

mk!k�1 / Trkð�k 	mkþ1!k 	mk�1!kÞ 	m�1
k�1!k (5)

mk!kþ1 / Trk�nð�k 	mkþ1!k 	mk�1!kÞ 	m�1
kþ1!k (6)

�k / �k 	mkþ1!k 	mk�1!k (7)

where all proportionality constants can be set by normal-

ization and �k ¼ expð�ĤkÞ. The 	 product is defined by
A 	 B ¼ expðlogAþ logBÞ. We note a subtle difference
between these belief propagation equations and those of
[8,12]. If the action of the partial trace and the 	 product
were commutative as they are in the classical case, the two
appearances of the term mk�1!k in Eq. (5) would cancel,
and similarly for mkþ1!k in Eq. (6). These cancellations
were assumed in [8,12], based on heuristic arguments and
numerical evidences. However, we see that they are re-
quired to establish a direct connection with the MED. Any
fixed point of the iteration equations for messagesm yields
a lower bound to the free energy of the system. Moreover,
as in [8,11,12], this iterative procedure can be used to
evaluate other quantities such as correlation functions,
and extends other geometries.
State reconstruction and probabilistically checkable

proofs (PCP).—Given a global quantum state �, such
that SSA is saturated for the given choice of Markov
shields, we can reconstruct the global state from the
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local state. Using the structure theorem of [19], we
have logð�f<kþ1gÞ ¼ logð�f<kgÞ þ logð�k[Mk

� logð�Mk
Þ.

Iterating this procedure allows us to reconstruct the global
state from the local state. In the supplementary material
[20], we extend this idea and show that any state saturating
SSA on a tree graph is the thermal state of a Hamiltonian
that is the sum of local, commuting terms. This procedure
may help address the structure of topologically ordered
states, since many lattice models with topological order
saturate SSA with an appropriate choice of shields [21]
(see [20]).

Deciding whether the ground-state energy of a classical
Hamiltonian on N particles is 0 or greater than N� for
some positive constant � is a very difficult problem. In
general, it is NP complete, by the famous PCP theorem
[22]. The analogous decision problem for a quantum
Hamiltonian [23] is in QMA [24], but it is not known to
be QMA-complete (this is the quantum PCP conjecture).
While this question concerns zero temperature, it is equiva-
lent to determining whether the free energy becomes
negative within a constant accuracy � at temperature T <
�= logd where d is the number of levels of each particle. It
is easy to verify if a set of operators fAk; Bkg are a solution
to Eqs. (3) and (4), so the problem of lower bounding the
free energy of a quantum system using the Markov entropy
decomposition is in NP. Thus, one way to disprove the
quantum PCP conjecture would be to rigorously evaluate
tightness of this bound. Showing that a constant accuracy
can be achieved with a shield of size n 2 OðlogNÞ would
suffice.

Multipatch MED.—We now discuss a possible extension
of our method. Let F1

M and F2
M denote the Markov free-

energy formulas obtained from two different neighbor-
hoods in our procedure. Clearly, Fmax

M ¼ maxkF
k
M is a

lower bound to the free energy. The convex function

F1;2
MEDðTÞ � min

f�Xg2 ~�
max
k

Fk
Mðf�XgÞ

is an even better lower bound. That is, instead of minimiz-
ing F1

M and F2
M separately, we minimize their maximum,

subject to the constraint that the reduced density matrices
used to compute the two formulas are locally consistent
with one another.

In particular, the shapes of M1 and M2 can be
chosen to capture correlations on different length scales
of the system. For instance, M1 could consist of n ¼ 6
consecutive sites while M2 could consist of three
pairs of sites, each separated by some distance, i.e.,
M2 ¼ f1; 2; 4; 5; 8; 9g. Clearly, M1 captures the short
range correlations while M2 captures the long-range
correlations. The free-energy formula obtained by the
combination of both regions is forced to assign reduced
density matrices compatible with both type of correlations.

Discussion.—MED is on the one hand a possible numeri-
cal tool for studying the thermodynamics of quantum sys-
tems in a more accurate way than is possible using exact
diagonalization. On the other hand, it provides a theoretical

basis for the quantum belief propagation procedure devel-
oped previously to study disordered quantum systems;
while we focused in translationally invariant systems
above, we can apply the procedure more generally, e.g.,
to quantum spin glasses [25], treating each reduced density
matrix �X as an independent variable. Finally, it offers a
physics-inspired procedure that may help tackle outstand-
ing problems in quantum computational complexity.
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