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We present an analytical approach for similarly and highly charged planar interfaces in the presence of

counterions. The procedure is physically transparent and based on an exact low temperature expansion

around the ground state formed by the two-dimensional Wigner crystal of counterions. The one plate

problem is worked out, together with the two plates situation. Unlike previous approaches, the expansion

is free of divergences, and is shown to be in excellent agreement with available data of Monte Carlo

simulations under strong Coulombic couplings. In the two plates case, the present results shed light on the

like-charge attraction regime.
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The behavior of charged particles in the vicinity of
charged interfaces is a central yet elusive problem in the
equilibrium statistical mechanics of Coulomb fluids, in-
cluding colloidal science. A landmark in the field was the
realization in the 1980s that similarly charged surfaces may
attract each other under strong enough Coulombic cou-
plings, which can be realized in practice increasing the
valency of the counterions involved [1]. Notorious illustra-
tions of this like-charge attraction are the formation of DNA
condensates [2] or aggregates of colloidal particles [3].

The weak-coupling limit is described by the Poisson-
Boltzmann mean-field approach [4] and by its systematic
improvements via the loop expansion [5–7]. A remarkable
achievement of the past decade has been accomplished in
the opposite strong-coupling (SC) limit, pioneered by
Rouzina and Bloomfield [8], substantiated by Shklovskii,
Levin, and collaborators [9], and formalized by Netz and
collaborators [10–12]. An essential ingredient is that the
layer of counterions close to a charged wall becomes two
dimensional, and in the field-theoretical method put for-
ward in [10,11], the leading behavior stems from a single-
particle theory, which produces more compact profiles than
within mean-field theory [13]. Next correction orders cor-
respond to a virial or fugacity expansion in inverse powers
of the coupling constant �, to be defined below. The
method requires a renormalization of infrared divergences
via the electroneutrality condition. A comparison with
Monte Carlo (MC) simulations [10] indicates the adequacy
of the virial SC approach to capture the leading large �
order, but its failure for the first correction.

The establishment of an (approximative) interpolation
between the Poisson-Boltzmann and SC regimes, based on
the idea of a ‘‘correlation hole,’’ was the subject of a series
of works [14–17]. A relevant observation in [17], corrobo-
rated by a comparison with the MC simulations, was that
the first correction in the SC expansion is proportional to

1=
ffiffiffiffiffi
�

p
, and not to 1=� as suggested in [10,11].

The aim of this Letter is to revisit highly charged inter-
faces and establish an exact expansion which, in light of

the previous discussion, has yet to be formulated. The
leading term of counterion density profiles coincides with
the single-particle picture of the original virial SC works.
Our expansion is free of infrared divergences and entails a

correction in 1=
ffiffiffiffiffi
�

p
to the leading behavior, thus formally

corresponding to the lowest order expansion in terms of the
temperature. Our analytical results are shown to be in
excellent agreement with available MC data without ad-
justable parameters. Our procedure is versatile. It yields
new exact results in the like-charge attraction regime and
is, as such, relevant for practical applications such as the
stability of cement pastes [18].
Here, we study a classical system of (equally charged)

counterions in the vicinity of one or two planar walls
bearing a uniform surface-charge density, �e (e is the
elementary charge and�> 0), the system as a whole being
electroneutral. The system, at thermal equilibrium at the
inverse temperature � ¼ 1=ðkBTÞ, is immersed in a solu-
tion of dielectric constant � containing q-valent counter-
ions, each thus having charge �qe. For simplicity, no
image forces are present. Let us describe briefly the origi-
nal approach of [10,11] for the case of a single wall
localized in the z ¼ 0 plane. The counterions are confined
to the half-space z � 0. The relevant length scales in
Gaussian units are the Bjerrum length ‘B ¼ �e2=�, i.e.,
the distance at which two unit charges interact with thermal
energy kBT, and the Gouy-Chapman length � ¼
1=ð2�q‘B�Þ, i.e., the distance from the charged wall at
which an isolated counterion has potential energy equal to
thermal energy. All lengths r will be expressed in units of
�, ~r ¼ r=�. The counterion density profile �ðzÞ, which
only depends on the distance from the wall z, will be
considered in the rescaled form ~�ð~zÞ ¼ �ð�~zÞ=ð2�‘B�2Þ,
so that the electroneutrality condition q

R1
0 dz�ðzÞ ¼ �

simply reads
R1
0 d~z ~�ð~zÞ ¼ 1. The coupling parameter

quantifying the strength of electrostatic correlations is
� ¼ 2�q3‘2B�; it will play the role of our expansion
parameter. According to the virial SC approach [10,11],
the counterion density profile can be formally expanded as

PRL 106, 078301 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

18 FEBRUARY 2011

0031-9007=11=106(7)=078301(4) 078301-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.078301


~�ð~zÞ ¼ ~�0ð~zÞ þ 1

�
~�1ð~zÞ þOð��2Þ; (1)

where

~� 0ð~zÞ ¼ e�~z; ~�1ð~zÞ ¼ e�~zð~z2=2� ~zÞ; (2)

with � ¼ �. The leading term ~�0ð~zÞ comes from the
single-particle picture of counterions in the linear
surface-charge potential. TheMC simulations [10] indicate
that the first correction ~�1ð~zÞ has the expected functional
form for �> 10; however, the value of the prefactor is
incorrect. The simulations indeed reveal that � � �, see
the inset of Fig. 1, where the prefactor � extracted from
MC simulations following Eq. (1) is much smaller than�.

Our approach is based on the fact that in the asymptotic
limit � ! 1 the counterions collapse on the charged
surface, creating a 2D hexagonal (equilateral triangular)
Wigner crystal [9] where every ion has 6 nearest neighbors
forming a hexagon. Let us denote by Ri ¼ ðXi; YiÞ
the position vectors of the vertices on this hexagonal
lattice. Since there are just two triangles per particle, the
lattice spacing a of the globally electroneutral structure is

given by q=� ¼ ffiffiffi
3

p
a2=2. Note that the large � limit

coincides with the regime in which the distance a between
the nearest-neighbor counterions is much larger than the
distance � between the counterions and the charged sur-

face [8], ~a � a=� / ffiffiffiffiffi
�

p � 1. When� ! 1, each vertex
Ri is occupied by a counterion i (i ¼ 1; . . . ; N; N ! 1).
The ground-state energy of the counterion system together
with the homogeneous background charge is E0. For �
large but not infinite, the fluctuations of ions around their
lattice positions begin to play a role [19].

Let us first shift one of the particles, say i ¼ 1, from its
lattice position R1 by a small vector �R1 ¼ ðx; y; zÞ
(�R1 � j�R1j � a) and look for the corresponding
change in the total energy �E ¼ E� E0 � 0. The first
contribution to �E comes from the interaction of the

shifted counterion with the potential induced by the homo-

geneous surface-charge density: �Eð1Þ ¼ 2�qe2�z=�. The
second contribution to �E comes from the interaction of
the particle with all other particles on the 2D hexagonal
lattice. This contribution can be expanded as an infinite
series in x, y, and z; for our purposes, it is sufficient to
consider this expansion up to harmonic terms, which, in the
z direction, read

��Eð2Þ
z ¼ X

i�1

� ðqeÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
i þ z2

q � ðqeÞ2
Ri

�
��ðqeÞ2

2a3
Sz2: (3)

Here, the dimensionless quantity S ¼ P
i�1ðRi=aÞ�3 can

be expressed from the general theory of lattice sums [20]

S ¼ X1
m;n¼�1
ðm;nÞ�ð0;0Þ

1

ðm2 þmnþ n2Þ3=2

¼ 2ffiffiffi
3

p 	

�
3

2

��
	

�
3

2
;
1

3

�
� 	

�
3

2
;
2

3

��
; (4)

where 	ðz; qÞ ¼ P1
n¼0 1=ðqþ nÞz is the generalized

Riemann zeta function and 	ðzÞ � 	ðz; 1Þ. Explicitly, S ¼
11:034 . . . . A shift of the particle simultaneously along all
directions does not induce ‘‘mixed’’ harmonic terms of
type xz or yz. The harmonic term in the (x; y) plane can
be computed, and in dimensionless form, we have

� ��E��~zþ 33=4

ð4�Þ3=2
Sffiffiffiffiffi
�

p
�
~z2

2
� 1

4
ð~x2 þ ~y2Þ

�
: (5)

This formula reveals a relationship between the order of
the expansion of���E in the dimensionless lengths ~x, ~y, ~z

and the expansion in 1=
ffiffiffiffiffi
�

p
. The linear term �~z, which is

the only one which does not vanish in the limit � ! 1, is
the leading term. It corresponds to the single-particle pic-
ture, in close analogy with the previous virial SC approach.

The harmonic terms turn out to be of order�ðqeÞ2�2=a3 /
1=

ffiffiffiffiffi
�

p
, and likewise, terms of the pth order in the variables

~x, ~y, ~z are of order �ðqeÞ2�p=apþ1 / 1=�ðp�1Þ=2. This
scheme constitutes a systematic basis for our large �
expansion.
The generalization of the above formalism to all parti-

cles is straightforward. We shift every particle i ¼
1; 2; . . . ; N from its lattice position Ri by a small vector
�Ri ¼ ðxi; yi; ziÞ. In what follows, however, we shall be
interested in the counterion density profile which only
depends on the ~z coordinate. Thus, when expanding in
statistical averages the Gibbs weight expð���EÞ in

powers of 1=
ffiffiffiffiffi
�

p
, we can restrict ourselves to the

z-harmonic part. The corresponding change in the total
energy �E is given by a counterpart of (5),

� ��E��X
i

~zi þ 33=4

16�3=2

1ffiffiffiffiffi
�

p X
i<j

ð~zi � ~zjÞ2
ðjRi �Rjj=aÞ3

: (6)

The next simplification comes from the fact that particles
are identical, exposed to the same potential induced by the
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FIG. 1. Comparison between the analytical first correction to
the profile ~�0 (solid curve) and the Monte Carlo results of
Ref. [10] at � ¼ 103, for a single charged wall. The inset
compares our prediction for the rescaling factor � [solid curve
given by Eq. (9)] to its Monte Carlo value reported in [10] and to
the original virial SC prediction � ¼ � (dashed line).
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surface charge, so that a summation over particle coordi-
nates can be represented by just one auxiliary coordinate.
For the density particle profile, defined by �ðrÞ ¼
hPN

i¼1 �ðr� riÞi ¼ Nh�ðr� r1Þi, we get explicitly

~�ð~zÞ ¼ Ce�~z
Z 1

0
d~z0e�~z0

�
1þ 33=4S

16�3=2

ð~z� ~z0Þ2ffiffiffiffiffi
�

p
�

þO

�
1

�

�
; (7)

where C is determined by the normalization conditionR
~� ¼ 1. Simple algebra gives

~�ð~zÞ ¼ e�~z þ 33=4

ð4�Þ3=2
Sffiffiffiffiffi
�

p e�~z

�
~z2

2
� ~z

�
þOð��1Þ: (8)

Comparing this result with Eqs. (1) and (2) obtained in the
virial SC approach [10,11], we see that the leading terms
coincide, while the first corrections have the same func-
tional dependence in space but different prefactors. The
result (8) can be reexpressed in terms of the � factor,
introduced in the relation (1), as follows:

� ¼ ð4�Þ3=2
33=4

1

S

ffiffiffiffiffi
�

p
¼ 1:771 . . .

ffiffiffiffiffi
�

p
: (9)

This formula, in excellent agreement with MC data, differs
substantially from the previous virial SC estimate � ¼ �;
see Fig. 1.

The method can be readily applied to the case of two
parallel walls, each having the same charge density �e,
located at distance d from one another. The electric field
between the walls is equal to 0 now. At T ¼ 0, the classical

system is defined by the dimensionless separation 
 ¼
d

ffiffiffiffiffiffiffiffiffi
�=q

p ¼ ~d=
ffiffiffiffiffiffiffiffiffiffiffi
2��

p
. A complication comes from the fact

that counterions form, on the opposite surfaces, a bilayer
Wigner crystal, the structure of which depends on 

[21–23]. We implement our expansion as the limit of large

� at fixed ~d, which means that 
 / ~d=
ffiffiffiffiffi
�

p ! 0. In this
limit, the relevant ground-state structure is that of the
single hexagonal lattice [so-called structure I, see Fig. 2
(left), where open and filled symbols are for ions on
opposite surfaces]. Because of global neutrality, the lattice
spacing b of the single (bilayer) hexagonal structure is

given by q=ð2�Þ ¼ ffiffiffi
3

p
b2=2.

The two walls are located at positions z ¼ 0 and z ¼ d.
The position vector Ri of the particle localized on the

shared hexagonal Wigner lattice will be denoted as Rð0Þ
i

if it belongs to the wall at z ¼ 0 (say, filled symbols of

the left-hand panel of Fig. 2) and asRðdÞ
i if it belongs to the

wall at z ¼ d (open symbols in Fig. 2). Let us shift the
particle i ¼ 1 localized on the z ¼ 0wall by a small vector

�Rð0Þ
1 ¼ ðx; y; zÞ and look for the energy change �E from

the ground state. Since the potential induced by the surface
charge on the walls is constant between the walls, the

corresponding �Eð1Þ ¼ 0. The harmonic term in the z
direction reads

��Eð2Þ
z ¼ðqeÞ2

2b3

�
�X

i�1

z2

ðRð0Þ
i =bÞ3þ

X
i

d2�ðd�zÞ2
ðRðdÞ

i =bÞ3
�
: (10)

Using the exact values of the partial hexagonal sums [20]P
i�1½b=Rð0Þ

i �3 ¼ 5S=12,
P

i½b=RðdÞ
i �3 ¼ 7S=12, �Eð2Þ

z

turns out to be positive, as it should. The harmonic term
in the (x; y) plane can again be computed but proves
immaterial for the sake of our purposes. When all particles
are shifted from their lattice positions fRig to fðxi; yi; ziÞg,
the total energy change is given, as far as the z-dependent
contribution is concerned, by

� ��E� 33=4

ð4�Þ3=2
ffiffiffi
2

p
ffiffiffiffiffi
�

p 1

2

X
i<j

ð~zi � ~zjÞ2
ðjRi �Rjj=bÞ3

: (11)

Expanding expð���EÞ in 1=
ffiffiffiffiffi
�

p
and enforcing electro-

neutrality, the density profile ~�ð~zÞ is obtained in the form

~�ð~zÞ ¼ 2
~d
þ 1

�

2
~d

��
~z�

~d

2

�
2 �

~d2

12

�
þOð��1Þ; (12)

where

� ¼ ð4�Þ3=2
33=4

1

S

ffiffiffiffiffi
�

p
ffiffiffi
2

p ¼ 1:252 . . .
ffiffiffiffiffi
�

p
: (13)

This � differs from the single-plate one (9) by the factor

1=
ffiffiffi
2

p
due to the different hexagonal lattice spacings a and

b. The functional form of (12) coincides with that of
Moreira and Netz [10,11]. For (not yet asymptotic) � ¼
100, the previous virial SC result � ¼ � is far away from
the MC estimate � ’ 11:2 [10], while our formula (13)
gives � ’ 12:5.
Applying the contact-value theorem to the density pro-

file (12), the pressure P between the plates is given by

~P ¼ �P

2�‘B�
2
¼ �1þ 2

~d
þ

~d

3�
þO

�~d2
�

�
: (14)

1 10 100 1000 10000
Ξ

1

10

d~
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Maximum attra
ction

b

FIG. 2. Left: Structure I of counterions on two parallel charged
plates (see text). Right: Phase diagram following from the
equation of state (14): the solid curve shows the points where
P ¼ 0. The dash-dotted line is for the corresponding virial SC
prediction [11]. The filled squares are those MC results from
Ref. [10] with �> 20, while the straight dashed line is for the
points ~dmax where @ ~P=@~d ¼ 0.
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An analogous result was obtained within the approximate
approach of Ref. [17], with the underestimated ratio

�=
ffiffiffiffiffi
�

p ¼ 3
ffiffiffi
3

p
=2 ’ 0:866. Equation (14) provides insight

into the like-charge attraction phenomenon. The attractive
(P< 0) and repulsive (P> 0) regimes are shown in Fig. 2

(right-hand panel). Although our results hold for ~d � �1=2

and for large �, the shape of the phase boundaries where
P ¼ 0 (solid curve) shows striking similarity with its
counterpart obtained numerically; the agreement with
Monte Carlo data is good, and better than with the original
virial SC prediction. While the upper branch of the attrac-

tion or repulsion boundary is such that ~d=
ffiffiffiffiffi
�

p
is of order

unity and hence lies at the limit of validity of our
expansion, we predict the maximum attraction to be ob-

tained for ~dmax ¼
ffiffiffiffiffiffi
6�

p / �1=4, as follows from enforcing

@ ~P=@~d ¼ 0. Since ~dmax=
ffiffiffiffiffi
�

p / ��1=4 ! 0, we can con-
sider the latter prediction, shown by the dashed line in
Fig. 2, as asymptotically exact; we note that it is fully
corroborated by the scaling laws reported in [15].

In conclusion, the present asymptotic result in the large
� regime shows that, while the leading order results (for
one or two plates) can be obtained by a single counterion
theory, the next terms actually reflect the complete ground-
state structure (N counterion property). This explains the
success of a virial-like expansion as in [11] to capture
leading order effects, but its failure for higher order cor-
rections. We have shown how such shortcomings can be
circumvented within a physically transparent procedure
and obtained analytical results in remarkable agreement
with Monte Carlo data. Our exact results involve inverse
powers of the expansion parameter �; in the two plates
problem, our results apply under the double requirement

that � is large and that ~d <
ffiffiffiffiffi
�

p
.

Our approach bears similarities with that of Ref. [19],
where, however, counterions have been assumed to stick to

the plates. This assumption is certainly relevant at large ~d,
but discards from the outset the excitations that are relevant

in the complementary range ~d <
ffiffiffiffiffi
�

p
, where the counter-

ions unbind from the plates; see above.
An important remark in order here is that the dominant

results follow from a ‘‘single counterion’’ picture because,
for a single planar interface, the dominant electric field
stems from the plate only, while the counterion contribu-
tion is subdominant. The situation changes for a curved
(say, spherical) interface since then other counterions con-
tribute to the dominant field felt by a given ion, no matter
how close to the interface this ion can be. Consequently,
the dominant ion profile around a charged sphere will not
be that obtained within the original approach of [10,11].

In practice, for a highly charged interface in water at
room T, one has �‘2B ’ 1, so that � may exceed 100 for
trivalent or tetravalent counterions [12]. We also note that
some highly charged systems, such as hydrated calciosili-
cates, responsible for the hardening of hydrated cement
pastes, exhibit �> 75 already with divalent ions such as
the commonly found Ca2þ [18]. Although asymptotic

(i.e., valid at large �), our predictions turn out to be
reliable for such couplings. A generalization of the ap-
proach to dielectric inhomogeneities, systems with salt or
asymmetric [24], offers interesting problems for more de-
tailed studies in the future.
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