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We introduce a novel generalization of the discrete nonlinear Schrödinger equation. It supports solitons

that we utilize to model chiral polymers in the collapsed phase and, in particular, proteins in their native

state. As an example we consider the villin headpiece HP35, an archetypal protein for testing both

experimental and theoretical approaches to protein folding. We use its backbone as a template to explicitly

construct a two-soliton configuration. Each of the two solitons describe well over 7.000 supersecondary

structures of folded proteins in the Protein Data Bank with sub-angstrom accuracy suggesting that these

solitons are common in nature.
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The discrete nonlinear Schrödinger equation [1] is a
prime example of a universal equation. It originally ap-
peared in the connection of polarons in molecular crystals
[2] but has since had numerous applications from fiber
optics and nonlinear acoustics to quantum condensates
and ocean waves. The equation supports both stationary
and time dependent solitons that were first introduced to
describe Davydov solitons in proteins [3], then found in
applications to the crystalline state of acetanilide [4], and
subsequently emerged in Bose-Einstein condensates [5].
Today the discrete nonlinear Schrödinger equation to-
gether with its generalizations (GDNLS) form a very ac-
tively studied family of nonlinear equations, widely
utilized to describe a multitude of phenomena in disparate
physical, chemical, and biological scenarios [1–6].

In this Letter we argue that solitons of GDNLS equation
are also common in polymers, they may even be pivotal in
describing the collapsed phase: In general, a polymer such
as protein displays three different nontrivial phases. These
are in the universality class of self-avoiding random walk,
in the universality class of Brownian motion, and in the
universality class of a collapsed polymer [7]. The first two
phases are theoretically quite well understood, and several
models have been presented to describe them [8]. But the
collapsed phase is much more difficult to describe and
tractable models are hard to come by. Here we introduce
a novel GDNLS equation that relates to an energy function
that has been shown to characterize the collapsed phase
[9,10]. We propose that the presence of solitons is essential
for describing collapsed (chiral) polymers. While the
model we consider is applicable for a large class of (chiral)
polymers as a concrete example we address the problem of
proteins in their native state, in particular, since there is a
large amount of data available for comparisons [11].

We describe a polymer by the coordinates ri of the N
backbone carbons (i ¼ 1; . . . ; N), in the case of proteins

these coordinates can be downloaded from the Protein Data
Bank (PDB) [12]. We compute the tangent vectors

ti ¼ riþ1 � ri
jriþ1 � rij : (1)

The binormal and normal vectors are given by

bi ¼ ti�1 � ti
jti�1 � tij and ni ¼ bi � ti:

These vectors are subject to the discrete Frenet equation
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where T2 and T3 are two of the standard generators of
three-dimensional rotations, explicitly in terms of the per-
mutation tensor we have ðTiÞjk ¼ �ijk.

From (1) and (2) we compute the bond angles �i and the
torsion angles �i in terms of the PDB data for ri.
Alternatively, if �i and �i are given we can compute the
coordinates ri. The common convention is to select �i to be
non-negative, the zeros of its continuum version (the cur-
vature) correspond to the inflection points of the ensuing
curve.
We determine �i and �i by locating the critical points of

the following energy function [9,10],

E ¼ � XN�1
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We select �i to be periodic, �i 2 ½��;��mod ð2�Þ. It is
subject to both local and nearest-neighbor interactions. The
variable �i 2 ½��;��mod ð2�Þ is only subject to local
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interactions. Finally, (b, c, d, e,m, q) are global parameters
that in applications to folded proteins are specific to a given
supersecondary structure, but are quite independent of the
detailed monomer structure.

The energy function (3) is a discretized version of the
standard Abelian Higgs Model; see [9] for details. The
third term is a symmetry breaking potential. The closely
related second term is a remnant of the method we have
used to discretize second order derivatives and the fourth
term has its origin in the familiar Higgs effect. The fifth
term is a one-dimensional version of the Chern-Simons
functional; its presence provides a very simple explanation
of homochirality with a positive (negative) parameter e
giving rise to right-handed (left-handed) chirality. The
sixth term is a Proca mass, and the last term is a regulator;
if this term is removed, the energy function (3) is exactly
the Hamiltonian of a discrete Abelian Higgs Model with
Chern-Simons term and Proca mass, in supercurrent vari-
ables that are commonly introduced in applications to
superconductivity [9].

We note that if we delete all but the first term in the
second sum, we arrive at the (discrete) Kratky-Porod
model [13] of semiflexible polymers. It cannot describe
the collapsed phase of polymers and, in particular, it does
not support solitons.

In [10] it has been proposed that the critical points of (3)
yield solitons, and approximative methods were introduced
to describe them as models of supersecondary helix-loop-
helix structures. We now show that (3) relates directly to
the GDNLS equation. This equation emerges as follows:
We first eliminate the auxiliary variable by varying the
energy functional with respect to �i. This gives us an
equation of motion to resolve for �i in terms of �i,

@E
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i �i þ 2e�i þ dþ q�2
i ¼ 0 ) �i½�i�
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We then perform a variation of the energy functional with
respect to �i, and substitute �i½�i� from (4) into the ensuing
equation of motion to arrive at our GDNLS equation

�iþ1 � 2�i þ �i�1 ¼ U0½�i��i � dU½��
d�2

i

�i

ði ¼ 1; . . . ; NÞ (5)

(with �0 ¼ �Nþ1 ¼ 0). This equation determines the sta-
tionary points of the following GDNLS Hamiltonian
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Here the second and the third term are familiar in the
context of the nonlinear Schrödinger equation [1–6]. If
only the third term is present the Hamiltonian relates to
the Hasimoto representation of space curves [14]. Finally,
the first term is a generalization of the Vinetskii-Kukhtarev
potential [15] of nonlinear waveguides. But none of these
truncations, even when they describe solitons, yield a
model that relates to proteins in their native state.
If we choose the parameters in (3) so that the potential

U½�� has two separate local minima, the results in [16]
ensure the existence of a dark soliton solution that inter-
polates between these two minima. Such a qualitative form
of U½�� typically follows if away from the vicinity of
� ¼ 0 the potential becomes dominated by the second
contribution to E in (3). This is the familiar double-well
potential term, with minima at � ¼ �m. A dark soliton is
then a configuration that interpolates from the ground state
in the vicinity of �1 � �m to the ground state in the
vicinity of �N � �m as we traverse the backbone. When
we compute �i from (5) and �i from (4) and integrate the
ensuing discrete Frenet equation we obtain a N-vertex
polygonal chain such that a ground state with � � �m
and � given by (4) is a helix, with the dark soliton describ-
ing a loop that connects two helices.
We follow [16] to solve (5) iteratively by locating a fixed

point of

�ðnþ1Þ
i ¼ �ðnÞ

i � �f�ðnÞ
i U0½�ðnÞ

i � � ð�ðnÞ
iþ1 � 2�ðnÞ

i þ �ðnÞ
i�1Þg:

(6)

Here f�ðnÞ
i gi2N denotes the nth iteration of an initial con-

figuration f�ð0Þ
i gi2N and � is some sufficiently small but

otherwise arbitrary numerical constant, for example, we
can choose � ¼ 0:01. It is obvious that a fixed point of (6)
satisfies the GDNLS equation (5). As an initial configura-
tion we utilize a step function, chosen to have the same
overall topology as the desired dark multisoliton solution.
Notice that as it stands, the energy functional (3) has the
� $ �� reflection symmetry that may not be exactly
realized in applications to folded proteins, for example,
there are proteins where a loop connects an � helix with a
� sheet. Thus we explicitly break this symmetry using the
parameter m: We set m ! ma for Na�1 � i � Na along
the chain. Typical values for ma are ma � ��=2 for the �
helix, and ma � �1 for the � strand.
We have performed extensive numerical investigations

of the dark soliton solutions to (6). We have found that for
proper values of the parameters solitons indeed exist and
can be combined into multisolitons that together with (4)
give a very high accuracy approximation of various folded
protein structures that are stored in the PDB [12].
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As an example we construct two dark solitons using as
our template the chicken villin headpiece subdomain HP35
(PDB code 1YRF) which is a naturally existing 35-residue
protein. It has three � helices separated from each other by
two loops. Together with the engineered version (2F4K in
PDB) and the very similar HP36 (1VII in PDB), the HP35
has become the subject of very extensive studies both
experimentally [17–20] and theoretically [21–24]. Using
classical molecular dynamics, the authors of [21–24] re-
port on the construction of native and near-native folds.
The native fold in [23] deviates in average around 1.63 Å in
C� RMSD from the x-ray data [19] for the sites 2–34
(counting from the N terminus), and Ref. [24] reports
very similar results with a proposed native fold average
C� RMSD around 1.54–1.65 Å for the sites 2–34. The
overall resolution in the experimental x-ray data is 1.07 Å
in RMSD [19]. We have selected this protein with the hope
that by constructing it as a two-soliton solution with loops
identified as the solitons, we can provide a new and bene-
ficial perspective for molecular dynamics simulations to
become even more effective.

In order to construct a two-soliton solution that describes
the HP35 fold in PDB, we first convert the PDB coordinates
for the C� carbons to the bond and torsion angles using (2).

The result is shown in Fig. 1. The reason we do not consider
the entire chain is that in order to compute these angles
from the three-dimensional space coordinates we need to
know the coordinates of three adjacent C� carbons. From
the �i profile we conclude that the C� backbone of 1YRF
consists of two dark solitons. These correspond to the two
loops of 1YRF and are located around the sites 49–53 (PDB
indexing) and 58–62 in Fig. 1, respectively. These solitons
interpolate between ground states that correspond to the
three � helices of 1YRF. The first helix is located between
the sites 42–49, the second between the loops around sites
53–58, and the third occupies the remaining sites starting
from 62 in Fig. 1. While the two-soliton profiles f�ig are
clearly identifiable, the profile of f�ig is substantially less
regular and a priori one may expect that the strong irregu-
larity in f�ig reflects the amino acid differences in the side
chains.Quite unexpectedlywe have found that this is not the
case. The f�ig profile can be computed very accurately from
(4) in terms of the soliton profile �i, as the apparent irregu-
larity reflects solely the mod(2�) multivalued character of a
periodic variable.
To construct the soliton profile for the entire chain, we

introduce for each of the two would-be solitons the global
parameters (b, c, d, e, m1, m2, q): There is one set of
parameters for the sites i ¼ 3–13 (counting from N termi-
nus) and another set of parameters for the remaining sites.We
construct the ensuing soliton solution of (5) by iterating (6) to
a fixed point, and compute its RMSD to 1YRF. We then
change the parameters randomly and compute the new soli-
ton profile, always starting from the same initial profile for
the�i.We compare its RMSD to1YRFwith that obtained for
the first set of initial parameters using the standard
Metropolis algorithm devised to minimize RMSD. By re-
peating these steps in combination with simulated annealing
we eventually produce our final soliton solution.
Note that even though we have seven parameters for

each soliton, four of these are determined by the curvature
and torsion on each side of the loop and thus only three
parameters are needed for each of the loops.
Figure 2 compares our minimal RMSD two-soliton con-

figuration with the 1YRF backbone constructed from the
x-ray data, for the sites i ¼ 3–33. The RMSD between
the two configurations is 0.72 Å, well below the overall

FIG. 1 (color online). (Top): The bond angles �i of 1YFR (red)
for the sites 3–33 (45–78 in the PDB indexing convention) and
their approximation by a soliton solution to Eq. (5) (blue).
(Bottom): The torsion angles �i of 1YRF (red) for the sites
3–33 (45–78 in the PDB indexing convention) and their approxi-
mation by a soliton solution to Eq. (4) (blue).

FIG. 2 (color online). Comparison between 1YRF backbone
(red [dark gray]) and a soliton solution of (3) (blue [light gray]).
The RMSD distance is 0.74 Å.
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resolution of the experimental x-ray data (which is 1.07 Å).
Indeed, our dark two-soliton pair describes the native
1YRF backbone with an accuracy comparable to that of
the radius of a carbon atom. In Table I we provide the
parameter values for this configuration. We also present
the parameter values for the best individual solitons that we
have independently constructed for the two loops.

Since the solitons we have constructed employ the spe-
cific profile of 1YRF as a template, one might think that the
parameter values in Table I are specific to this particular
protein, reflecting its unique amino acid structure.
However, this is not the case. For example, for the second
soliton in Table I we find that there are presently a total of
7.736 unique supersecondary structures in the PDB with
RMSD deviation less than 1.0 Å.

In conclusion, we have presented a novel generalized
discrete nonlinear Schrödinger equation that supports sol-
itons that describe chiral polymers such as proteins in their
collapsed phase. The equation involves only global pa-
rameters, in particular, the fold is determined by a single
function. With the 1YRF backbone as a template, we have
constructed a soliton configuration that describes the back-
bone with an atomary level accuracy less than the radius of
a carbon atom. Furthermore, we have found that thousands
of supersecondary structures in the PDB are described with
sub-angstrom accuracy by our solitons. Among the future
challenges is the enumeration and modeling of the differ-
ent supersecondary structures in the PDB and developing a
relation between genome and a soliton basis of the PDB
data.
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