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We describe the formation of deposition patterns that are observed in many different experiments where

a three-phase contact line of a volatile nanoparticle suspension or polymer solution recedes. A dynamical

model based on a long-wave approximation predicts the deposition of irregular and regular line patterns

due to self-organized pinning-depinning cycles corresponding to a stick-slip motion of the contact line.

We analyze how the line pattern properties depend on the evaporation rate and solute concentration.

DOI: 10.1103/PhysRevLett.106.077801 PACS numbers: 68.15.+e, 47.57.�s, 81.15.Lm, 81.16.Rf

The last decade has seen huge growth in interest in
phenomena that accompany evaporative and convective
dewetting of suspensions and solutions. Well known are
the detailed studies of the coffee stain effect [1,2] that
analyze the deposition and resulting structures left behind
by a receding three-phase contact line of an evaporating
drop of suspension upon a solid substrate. In particular,
Ref. [2] describes a large range of different deposition
patterns including cellular and lamellar structures, single
and multiple rings, and Sierpinski gaskets. Other observed
structures include crack [3] and chevron [4] patterns.
Recently it has been shown that evaporating polymer
solutions [5–7] and (nano)particle suspensions [8–10]
may be used to fabricate strikingly regular stripe patterns,
where the deposited stripes are parallel to the receding
contact line and have typical distances ranging from
10–100 �m. The goal is to use this effect as a nonlitho-
graphic technique for covering large areas with regular
arrays of small-scale structures, such as, e.g., concentric
gold rings with potential uses as resonators in advanced
optical communications systems [11]. The patterns depos-
ited from more complex fluids, such as polymer mixtures
[12] and DNA solutions [13], are also investigated. The
occurrence of regular stripe patterns is a somewhat generic
phenomenon, that is not only observed for different com-
binations of substances but also in a variety of experimen-
tal setups that allow for slow evaporation. Examples
include the meniscus technique in a sphere-on-flat geome-
try [7,9], a controlled continuous supply of liquid between
two sliding plates to maintain a meniscuslike surface [5]
and dewetting forced by a pressure gradient [10].
Interestingly, besides the stripes parallel to the receding
contact line, a variety of other patterns is observed, includ-
ing regular orthogonal stripes [9], superpositions of or-
thogonal and parallel stripes [5], regular arrays of drops
[5,14] and irregularly branched structures [14,15]. This
behavior is highly sensitive to the particular experimental
setup and parameters.

Despite the extensive number and variety of experi-
ments, an explanation of the formation of the regular
patterns has been rather elusive. Although most studies

agree that the patterns result from a stick-slip motion of
the contact line caused by pinning or depinning events
[2,6,11,16] no dynamical model of the periodic deposition
process exists. Most models assume a permanently pinned
contact line (see [17,18] and references therein) and are
therefore only able to describe the formation of a single
line deposit. A nonisothermal Navier-Stokes simulation
shows depinning from such a single line but no periodic
deposits [16]. The model of Ref. [19] describes drop arrays
formed via directed dewetting of the solvent that are sub-
sequently dried.
In this Letter we discuss a generic close-to-equilibrium

model for the evaporative and convective receding of a
three-phase contact line of a solution or suspension on a
solid substrate. We show that solely having a viscosity that
diverges at a critical solute concentration is sufficient to
trigger a self-organized periodic pinning-depinning process
that results in the deposition of regular line patterns. The
model can easily be extended to incorporate other processes
and in the future may be employed to assess their influence
on the basic mechanism that we describe here.
We consider a thin film of an evaporating partially

wetting nanoparticle suspension (or polymer solution) in
contact with its vapor on a flat solid substrate (see Fig. 1).
Assuming that all surface slopes are small, one may em-
ploy a long-wave approximation [20] and derive two
coupled evolution equations for the film thickness profile
hðx; tÞ and the vertically averaged solute concentration
field �ðx; tÞ:

FIG. 1. Sketch of a liquid front that recedes due to evaporation
and convection with a varying velocity vðtÞ. The deposition
process is characterized by the film thickness profile hðx; tÞ,
the concentration profile �ðx; tÞ (in the bulk film), and the
particle layer thickness hpðx; tÞ ¼ �ðx; tÞhðx; tÞ (outside the

bulk film).
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@th ¼ @x½Qðh;�Þ@xpðhÞ� � �

�
ðpðhÞ ���Þ; (1)

@tð�hÞ ¼ @x½�Qðh;�Þ@xpðhÞ� þ @x½Dð�Þh@x��: (2)

The mobility Qðh;�Þ ¼ h3=3�ð�Þ models Poiseuille flow
and incorporates the dynamic viscosity �ð�Þ that exhibits
a strong nonlinear dependence on the local solute concen-
tration. We employ the Krieger-Dougherty law [21,22]

�ð�Þ ¼ �0ð1��Þ��; (3)

where �0 is the viscosity of the pure solvent. We have
scaled � by the concentration at random close packing
(�c ¼ 0:63) so that � diverges when � ! 1. The precise
value of the exponent � ¼ ½���c depends on the type of
suspension. For noninteracting particles (i.e., particles that
have no net attractive forces between them and only have
excluded volume interactions), values for � between 1.4
and 3 are discussed, depending on the shape of the particles
[21]. For spherical particles the factor ½�� ¼ 2:5, giving
� ¼ 1:575. Other thin film models use � ¼ 2 [19,23]. For
interacting solute particles, values for � as low as 0.13 are
reported [24]. Depending on the particular system, the
transition at �c is either referred to as jamming or gelation
[24]. Here we fix � ¼ 1:575, although we have found
that the effects we describe below are even stronger for
smaller �.

The first term on the right-hand side of Eq. (1) (con-
served part) corresponds to convective transport of the
liquid whereas the second term (nonconserved part) mod-
els evaporation. The convective flow is driven by the
gradient of the pressure

pðhÞ ¼ ��@xxh��ðhÞ; (4)

where the first term is the Laplace pressure (� is the surface
tension) and the second is the disjoining pressure �ðhÞ ¼
2SLWd20=h

3 þ SP exp½�ðh� d0Þ=l0�=l0 that models a par-

tially wetting fluid [25,26]. Here, l0 is the Debye length, d0
is a molecular interaction length, SLW ¼ �A=12	d20 and

SP < 0 are the apolar and polar spreading coefficient,
respectively, and A < 0 is the Hamaker constant. We ex-
pect qualitatively similar behavior if other combinations of
stabilizing and destabilizing terms were used in� (cf. e.g.,
[27,28]). To derive the second term in Eq. (1) we assume
the system is close to equilibrium and near to saturation
and so evaporation is slow. In this limit evaporation with a
rate � is driven by the difference of the scaled pressure
p=� and the chemical potential of the ambient vapor �
[29,30]. Latent heat effects may be neglected, and the
density � is assumed to be equal for particles and solvent.
The first and second terms on the right-hand side of Eq. (2)
model convective and diffusive transport of the particles,
respectively. Note that the diffusion coefficient depends on
concentration and we employ the Einstein-Stokes relation
Dð�Þ ¼ kBT=6	r0�ð�Þ, where kB is the Boltzmann con-
stant, T the temperature, and r0 the particle radius.

Models related to Eqs. (1) and (2) are used in studies of
particle-laden film flow [23] (without evaporation or wett-
ability effects) and dewetting of suspensions of surface
active particles [19] (different wettability regime). In the
limit � ! 0, our theory reduces to that used in [29] to
study the fingering instability of an evaporative front of a
pure liquid. We choose our scaling and some of the pa-
rameters to be the same as in [29]: The dimensionless

chemical potentialM ¼ ��=j~SPj ¼ �0:003, the diffusion

number D0 ¼ 3kBT=r0½6	A2j~SPj�1=3 ¼ 0:0003, and the

parameter 
 ¼ ðjAj=6	j~SPjÞ1=3=l0 ¼ 1:085 in the dimen-
sionless disjoining pressure, 1=h3 � expð�
hÞ; where
~SP ¼ SP expðd0=l0Þ=l0 [31]. Our main control parameters
are the initial mean (dimensionless) concentration �0 and

the evaporation number �0 ¼ 18	��0�=�½6	A2j~SPj�1=3
which represents the ratio of the time scales for convection
and evaporation of a film without solute. We solve the
nondimensional model by discretizing over a spatial do-
main of finite length L. Deposited patterns are obtained by
direct time simulations using a variable-step variable-order
backward difference scheme starting from an initially step-
like front that becomes smooth in the early evolution [32].
In the evaporative dewetting process one encounters dif-

ferent types of receding fronts. In the casewithout solute [29]
one may distinguish the limiting cases of (i) convection-
dominated and (ii) evaporation-dominated dewetting for
small and large values of �0, respectively. In case (i) the
front recedes rapidly and convective motion maintains a
capillary ridge despite evaporation. In case (ii) convection
ismuch slower than evaporation, the front recedes slowly and
there is no capillary ridge. In the presence of a solute the
situation is more complex and stationary receding front
shapes are not found for some parameter values. In general,
on starting with a uniform concentration �ðx; 0Þ ¼ �0, as
the front recedes, it deposits part of the solute in a smooth
layer. Evaporation in the contact line region increases the
local concentration � and consequently also the viscosity.
When � ! 1, the convective motion in the contact region
stops completely (the suspension becomes locally jammed)
due to the strong nonlinearity inEq. (3). Onemay say that the
initial convection-dominated stage changes into an
evaporation-dominated regime as the local evaporation num-
ber� ¼ ð�ð�Þ=�0Þ�0 becomes large. At this stage the front
seems pinned. However, it is actually still moving extremely
slowly, solely by evaporation, and deposits a first line of
solute. During this, the local concentration in the contact
region decreases, i.e.,� decreases, until the front depins and
convective motion resumes. Subsequently, after the initial
line is deposited, various scenarios are possible: (a) a deposit
of uniform thickness (i.e., only a single line is deposited),
(b) deposition of a finite number of lines followed by a layer
of constant thickness, (c) intermittent line pattern, and
(d) regular line pattern. In the narrow region of parameter
space where the ‘‘limiting’’ case (c) occurs, we find that
this behavior is normally very sensitive to computational
details [which is not the case for (d)], so we believe that the
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intermittent line patterns represent a ‘‘chaotic deposition.’’
Typical profiles are displayed in Fig. 2 and the corresponding
parameter ranges are marked in the phase diagram Fig. 3.

Ignoring initial transients, we distinguish two main types
of deposits: those of uniform thickness [regions (a),(b) and
(e) in Fig. 3] and periodic line patterns (region (d)). In the
latter one observes (as in the experiments [6,10,11]) a
regular stick-slip motion of the contact line, since the
typical time scales for convection-dominated and
evaporation-dominated front motion may differ by orders
of magnitude.

Structure formation results from a subtle interplay be-
tween convection, evaporation, and diffusion. The basic
mechanism of line deposition described above stems from
a balance of convective and evaporative motion. Diffusion
does not change that picture as long as its time scale is not
much shorter than the convective and evaporative time
scales. Increasing D0 merely shrinks the region (d) in
Fig. 3. However, in the unlikely situation that diffusion is

so fast that nanoparticles diffuse away ahead of the reced-
ing contact line (e.g., whenD0 ¼ 0:3), then line deposition
is suppressed. We do not consider this case here.
Next, we analyze regular line patterns as obtained from

long-time simulations [32]. Excluding the initial transient
we take a sequence of N regular deposition periods (lines),
where 10 & N & 100, depending on the period of the
deposit and required CPU time. We measure the amplitude,
relative width (defined as 2�=½period�, where � is the
standard deviation) and skewness of the lines, and the
period of the line pattern. We find that these quantities
strongly depend on both the evaporation number �0 and
the concentration�0. We focus on two cuts through region
(d) in Fig. 3 (dashed lines).
First, we fix �0 ¼ 4:64� 10�7 and vary the bulk con-

centration �0. Figure 4 presents line characteristics and
selected profiles. On increasing �0 from a region without
periodic line deposition, one first finds large amplitude
almost solitary peaks separated by very large distances.
On further increasing �0, the amplitude first hardly
changes and then later decreases. The period rapidly de-
creases while the relative line width (not shown) and skew-
ness increase almost linearly, but with a slight drop at very
high concentrations �0 * 0:49. For higher �0 the deposit
pattern becomes almost uniform, with a small amplitude
harmonic modulation. Finally, the amplitude goes to zero
(at finite period) at the upper border of region (d).
Second, Fig. 5 presents results for fixed �0 ¼ 0:41 and

varying�0. Increasing�0, moving from the narrow region
(b) of multiple lines (Fig. 3), one passes through a very
narrow band of intermittent line patterns (c) followed by
the region (d) of regular line patterns. For the lowest values
of�0 in (d), the patterns have a relatively small period and
a small but nonzero amplitude. The strongly anharmonic
peaks are skewed to the right with their tail pointing
towards the receding film. On increasing �0 the period
increases. The amplitude, however, first increases and
then decreases, until at a certain threshold the pattern ceases

FIG. 2 (color online). Typical deposit profiles: (a) a single line,
(b) a finite sequence of lines, (c) an intermittent line pattern, and
(d) a regular line pattern. The parameters are �0 ¼ 0:41 and
from (a) to (d): �0 ¼ ð14:7; 0:1; 0:147; 0:464Þ � 10�6.

FIG. 4 (color online). Left: dependence of the regular line
pattern properties on �0 in the range bounded by the vertical
dashed lines that corresponds to region (d) of Fig. 3. �0 ¼
4:64� 10�7 is fixed. Right: Line patterns for �0 ¼ 0:32, 0.41,
and 0.499 (from the top) indicated by dotted lines in the upper
left panel.

FIG. 3 (color online). Morphological phase diagram of depo-
sition patterns, in the plane spanned by evaporation number �0

and bulk concentration �0. Symbols denote performed simula-
tions. In the central region we find (d) regular line patterns (�)
and outside of this region (*) we observe: (a) single lines, (b)
multiple lines, (c) intermittent patterns, and (e) no lines. For
typical deposit profiles for (a)–(d) see Fig. 2. Results from along
the dashed lines are presented in Figs. 4 and 5.
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to be periodic and we arrive in the narrow border region (b),
where only a finite number of lines are deposited.
Correspondingly, the relative width decreases, as lines get
more peaked. Remarkably, the skewness changes sign, i.e.,
the tail of the lines shifts from pointing towards the receding
film, to pointing away. This effect was observed in experi-
ments on nanoparticle suspensions [33] and can be ex-
plained as follows: For smaller values of �0, the capillary
ridge is large and accommodates a large amount of nano-
particles as it recedes. When the front pins, the capillary
ridge is evaporated and these nanoparticles are deposited in
the thick tail to the right. When the liquid front depins, it
results in a further drop in the deposition thickness (seen as a
shoulder in the tail). For higher values of �0 the capillary
ridge is smaller and so the right tail is smaller.

Additional simulations varying the parameters M and 

for parameter values where the two dashed lines in Fig. 3
cross, show that the deposition of line patterns is a robust
phenomenon: Decreasing 
 results in a small decrease of
the upper film height and (much less so) of the precursor
height. The period and amplitude of the line pattern in-
creases. Decreasing M (i.e., increasing evaporation) leads
to an increased amplitude and period of the lines.

In conclusion, we have studied a generic model for the
formation of patterned deposits that incorporates wettabil-
ity, capillarity, evaporation, convective transport of the
solution and diffusion of the solute. We find that a strong
nonlinear dependence of viscosity (i.e., the front mobility)
on concentration triggers, in an intricate interaction with
evaporation and diffusion, the deposition of periodic and
aperiodic line patterns as observed in experiments for
many different materials and settings [2,5–11,33]. We
believe that the model explains a basic mechanism for
the formation of regular line patterns. They result from a
self-organized cycle of deposition-caused pinning-
depinning events that is experimentally often described
as a stick-slip motion [6,10,11]. In the future the basic

dynamical model should be extended to study the influence
of other important effects on the deposition. These include
thermal effects, solute-dependent wettability and the na-
ture of the solvent-solute interaction.
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