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We study the effects of a gate-controlled Rashba spin-orbit coupling to quantum spin Hall edge states in
HgTe quantum wells. A uniform Rashba coupling can be employed in tuning the spin orientation of the
edge states while preserving the time-reversal symmetry. We introduce a sample geometry where the
Rashba coupling can be used in probing helicity by purely electrical means without requiring spin
detection, application of magnetic materials or magnetic fields. In the considered setup a tilt of the spin
orientation with respect to the normal of the sample leads to a reduction in the two-terminal conductance
with current-voltage characteristics and temperature dependence typical of Luttinger liquid constrictions.
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The quantum spin Hall (QSH) insulator is a two-
dimensional (2D) example of recently discovered topologi-
cal insulators [1-3]. Because of their special band structure
arising from a strong spin-orbit interaction (SOI), topo-
logical insulators exhibit gapless surface modes forming a
helical electron liquid. In the QSH state the edge supports
two counterpropagating modes of opposite spin. The edge
modes are protected by time-reversal symmetry, thus being
robust against effects of small deformations of the sample
and time-reversal invariant disorder [4]. The existence of
the QSH state has been confirmed in a series of experi-
ments performed in HgTe quantum-well structures [5-8].
However, a quantitative observation of the helical structure
has not been achieved yet.

Previously helicity detection has been considered in
hybrid spin Hall-QSH structures where gaining quantita-
tive results has proven to be difficult [7]. Hou and co-
workers proposed a four-terminal geometry where the
helical nature of the edge states manifest in a novel con-
ducting phase [9]. Their scheme requires strong electron-
electron interactions that can be achieved only under
special conditions. Recently it was also proposed that
injection of electrons from a ferromagnetic STM tip to
the edge modes could reveal the helical nature of the edges
[10]. However, a purely electrical measurement is desir-
able since injection of a spin-polarized current from a
ferromagnetic material is highly inefficient [11].

The intrinsic SOI in HgTe quantum-well structures
exceeding the critical thickness d. =~ 63 A results in an
inverted band structure leading to the QSH state [2]. If, in
addition, the surface inversion symmetry is broken by an
asymmetric doping or application of a gate-induced elec-
tric field, also the Rashba SOI is present [12]. The tuna-
bility of the Rashba interaction renders it a very attractive
possibility for spin manipulation. The magnitude of the
Rashba SOI in HgTe quantum wells can be several times
larger than in any other semiconductor material and
can be tuned over a wide range by varying the gate
voltage [13,14]. Recently, effects of a disordered Rashba
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interaction on edge states were studied in the presence of
electron-electron interactions. This type of disorder can
lead to a localization and destroy the QSH state for suffi-
ciently strong interactions [15].

In this Letter we study an electronic manipulation and
measurement of helicity properties of the edge states by
employing the Rashba SOI. A spatially uniform Rashba
SOI, controllable by the gate voltage, rotates the spin axis
of the edge modes as depicted in Fig. 1 (top). We introduce
a point-contact geometry where helicity of the edge modes
can be probed by an electrical conductance measurement,
Fig. 1 (bottom). The spin orientation of the edge modes
manifests in a reduced two-terminal conductance with a
distinctive current-voltage characteristics and temperature
dependence typical for Luttinger liquid constrictions. This
is our central result.

First we discuss the QSH edge model in the presence of
the Rashba SOI and electron interactions. Then we intro-
duce a point-contact geometry suitable for probing spin of
the edge states and conclude by discussing experimental
observation of predicted effects.

Low-energy dynamics of HgTe/CdTe wells are well-
described by the k - p Hamiltonian derived in Ref. [2]. This
description is applicable when studying phenomena on
length scales much larger than the lattice constant. By
imposing a boundary and projecting the 2D Hamiltonian
onto the edge states (see Ref. [6]), one obtains the effective
1D Hamiltonian of the gapless edge excitations in the
quantum spin Hall phase

Hosu = vr f dxVt(—id, o)V, (1)

where the two-component spinor ¥ = (¢, i l)T describes
the helical edge modes of a single edge (x and z directions
asin Fig. 1). The edge states reflect the topological order in
the bulk and are robust against deformations. The crucial
property of the Hamiltonian (1) is that the counterpropa-
gating modes consist of fermions of opposite spins. The z
direction coincides with the perpendicular direction of
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FIG. 1 (color online). Top: Left-moving and right-moving
edge channels experience opposite effective magnetic fields
Bgsn and Bg corresponding to the intrinsic QSH field and the
Rashba SOI. The spin orientation of the edge states is deter-
mined by a relative magnitude of the fields. The effective field
Bg and thus the angle 6 can be tuned by the external gate
voltage. Bottom: Quantum well with a smooth edge deformation
(exaggerated in the figure) seen from above. The Rashba field
induces an in-plane spin projection which is parallel transported
along the edge. The magnified view shows the in-plane spin
projection of right movers at P and left movers at Q. Because of
the rotation along the deformation, the spin states of the counter-
propagating channels on different sides of the point contact
have a finite overlap. This enables a spin-dependent tunneling
which can be tuned by the gate voltage.

the 2D structure. In addition to (1) we consider a Rashba
spin-orbit coupling of the form

Hp = f dxa(x)¥t(—id, o)W, 2)

where a(x) is the spin-orbit coupling constant that can
be tuned by the external gate voltage. An interaction of
the form (2) arises from the surface inversion asymmetry
induced by the perpendicular electric field. For the remain-
der of our analysis we treat « as a real constant indepen-
dent of position. The Rashba term (2) is also time-reversal
invariant so the fundamental symmetries of the system are
respected. Thus, in the absence of electron-electron inter-
actions, the edge states are described by the Hamiltonian
Hy = Hosy + Hp

Hy=v, fdx‘l’*(cos fo, + sinfo,)(—id,)V,

where v, =4/v} + a2, cosf =vp/v, and sing =

a/v,. Introducing the rotation W' = exp(—io,0/2)V,
Hj can be brought in the form (1):

Hy = v, f dx W't (—id, o)W, 3)

where the new 7’ direction forms an angle # with the z axis.
In the following we will drop the primes from the rotated
quantities in Eq. (3) remembering that the new z axis is
rotated with respect to the normal of the plane, as shown
in Fig. 1. The Hamiltonian (3) indicates that the uniform
Rashba term results in a renormalization of the Fermi
velocity and a rotation of the spin axis, leaving the system
otherwise unaffected. However, the tilt in the spin axis
leads to qualitatively new effects when the edge geometry
has deformations such as circular arcs. The in-plane com-
ponent of spin, tunable by the gate voltage, follows along
the edge as depicted in Fig. 1. This property can be used in
the detection of the helicity direction by a purely electrical
measurement as discussed below.

The Hamiltonian (3) describes the edge channel of non-
interacting particles and provides a natural starting point
to discuss interactions. Only interactions allowed by the
time-reversal invariance are of the form [4]

Hy— gd[dxwwrwfm,

H, = gffdwwmwg,

where the first term corresponds to density-density inter-
action between the counterpropagating modes and the
second term describes forward scattering (index o is
summed over the two spin projections). There is one
more allowed interaction term describing momentum non-
conserving umklapp processes which is unimportant away
from the half filling and not considered here. By employing
standard bosonization methods [16], the interacting
Hamiltonian H = H, + H, + H; becomes

=" [ axg@.00 + 57000

2 +g,—2
where g = T T 87— 284 i¢ the Luttinger liquid in-
2mv, + gp 284

teraction parameter and u = v, /g the renormalized Fermi
velocity.

Now we examine consequences of the Rashba SOI
induced tilt in the two-terminal transport setup depicted
in Fig. 1. As indicated in Fig. 2, the counterpropagating
electrons on the different sides of the point contact have a
potential difference due to the applied bias between the
sample edges. In addition, the rotation of the in-plane spin
component along the arc enables the tunneling of right
movers to left movers (and vice versa when the bias is
inverted) through the point contact, thus reducing the total
current propagating along the edge. To couple the edge
states on different sides, the width of the constriction
should be of the order of 200 nm or smaller [17].
Samples of comparable dimensions have already been
fabricated and employed in experiments [18]. Calculation
of the tunneling current is analogous to the analysis of
Ref. [19]. The tunneling Hamiltonian through the point
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FIG. 2 (color online). Right-moving and left-moving edge
channels on different sides of the point contact (P and Q)
have different chemical potentials reflecting the bias voltage
over the system. Because of the finite tilt , the spin states of
the counterpropagating electrons at P and Q have finite overlap
(proportional to sinf) enabling tunneling. Tunneling current
reduces the total current propagating along the edge state. By
tuning @ it is possible to tune the backscattering current through
the point contact.

contact, with potential difference u = eV >0 between
the right- and left-moving electrons, is Hy,() =
I, ()¢t Q). (P)+ Hec where I',(f) = VT eit sing
is the effective tunneling amplitude. The factor e'#!
appears when the potential difference is accommodated
through the Peierls substitution and siné arises from the
overlap of the right-moving and left-moving spin states
on different sides of the contact. We have labeled the
electron field operators as right (¢ ) and left (¢ _) movers
bearing in mind that the spin-orientation is bound to the
propagation direction. The tunneling current operator
is the time derivative of the number operator: N (f) =
i [ dxX'[Hy(0), 10, XV, (1, ¥)] = il (t)B(t) + H.c.,
where B(t) = 1 (1, Q)¢ (1, P). The expectation value of
the current through the point contact in the lowest order
of the tunneling becomes I, = —2¢T sin’f Re [ diO(z)
e ([B(t), Bt(0)]) where the expectation value can be ex-
pressed in terms of Green’s function —2i ImG7 (¢, 0)? cal-
culated in the absence of Hy,, (). For positive times we get

b _27{3 sinh%(t - i()*)}_”_1

GZ(,0) =i =
2ru |7

where D = u/a, a is the short-distance cutoff and y =
(g + g7 1)/4 —1/2. Thus we have I, = —4¢7 sin?6 Im
X(u), with the Fourier sine-transform of the response
function X(u) = [drO(r) sinutG7 (2, 0)*. Evaluation of
the integral yields

Sinn——_—

D™ [2a\4v+1 AV
I, = —4eTsin’0 ( 77) " GnnPe

Qmu)’\ B 2
X B<2'y 1B it ’Bev) 4)
2 21

in terms of the Euler beta function B(x, y). From the current
we can evaluate the zero-bias conductance as
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FIG. 3 (color online). -V characteristics of the point-contact
current at different temperatures and interaction strengths.

., D27
Gpe = 2e2Ts1n2627m2(?

At zero temperature the current-voltage relation becomes
D% (ev)4y+1
2mu*l(4y +2)

The current-voltage relation exhibits an interaction-
dependent power law typical for Luttinger liquids, reflect-
ing the anomalous dimension (g + g~ ')/2 of the tunneling
operator [20]. In addition to the explicit # dependence,
the point-contact current (4) depends on 6 through u and g
since the effective Fermi velocity v, is 6 dependent.
To study the angular dependence of I, it is convenient
to decompose it as I, = IyF(V, T, 6), where the prefactor

[, = 4T x1077
0 avyp

dence and F(V, T, 6) = I,./I, is a dimensionless function
plotted in Fig. 3 [21]. Asis evident, F(V, T, #) also exhibits
a moderate 6 dependence. A typical value of the interac-
tion parameter g, in HgTe quantum wells in the absence of
the Rashba SOI has been estimated as g, = 0.5 [9,15]. To

estimate the typical magnitude of the current /, = 4eTx1077

avyp

4y
) BQ2y+ 1,2y +1).

I, = —2¢T sin’6

sin?fcos*’ 26 encodes the primary 6 depen-

we assume realistic values vy = 5.5 X 10° m/s, a =
10 nm and 7~ = 0.1v%, implying that I, = 4 X 1073 nA.
These numerical values suggest that G, = 0.01 — 0.1 X
2¢2/h is achievable.

The current through the point contact enables spin-
dependent backscattering, reducing the two-terminal cur-
rent and conductance from the values I, G in the absence of
the Rashba term. The total current between the terminals
becomes |/,| = |I| — 2|I,| implying that the conductance
is reduced by the point-contact contribution G,(T, 6) =
G(T) — 2G (T, 6). The magnitude of I, is an even func-
tion of @ and grows rapidly away from 6 = 0, see Fig. 4.
By varying 6 through the gate voltage and measuring G
one can access G (7, 0).

The tunability of the Rashba SOI is crucial for observing
the spin-dependent conductance. The effective Rashba
field should, ideally, be comparable to the intrinsic QSH
field to reach significant tilt angles. Using the parameters
calculated in Ref. [22], we estimate that thoe Rashba
coupling for a quantum well of width 70 A is a =
—15.6 nm?e&., where &, is a perpendicular electric field.
In case the gate voltage between the well and the gate
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FIG. 4 (color online). Angular dependence of the point-contact
current corresponding to different interaction strengths, where g
denotes the value of g at = 0. [, is an even function of 6. The
curves represent the bias value V =1 uV.

electrode 100 nm apart is 1 V, the estimate yields a =
0.16 nmeV [23]. This value should be compared to the
QSH scale vy = 0.365 nmeV, so for realistic gate volt-
ages the Rashba SOI and the intrinsic QSH field are of the
same order. This suggests that even large tilt angles 6 =~
7r/4 are achievable. Tuning the gate voltage does not only
affect the Rashba interaction but in practice also changes
the Fermi energy of the system. This could be undesired
since at large gate voltages the system moves from the
QSH state to the metallic regime. The effect can be com-
pensated by application of a back gate which allows tuning
of the Rashba SOI and the Fermi energy independently.
Experimental efforts towards realizing these types of struc-
tures are already underway.

Another challenge is measuring the backscattering cur-
rent due to the point contact. In real samples there are
always unideal features reducing the theoretical conduc-
tance value G, = 2¢*/h. The residual scattering, attrib-
uted to local conducting regions close to the edges [8], can
be distinguished from the point-contact backscattering due
to their different dependence on the gate voltage and
temperature. As long as the system stays in the QSH
regime, changes in the gate voltage are not expected to
affect the conductance essentially. Especially, if only the
asymmetry of the well is changed keeping the Fermi level
constant, residual backscattering should remain constant.
However, the point-contact current is strongly gate depen-
dent and vanishes at the gate value corresponding to a
symmetric well. The maximum conductance is obtained
at this gate value and any departures from the symmetric
configuration leads to reduction enabled by the tilted spin
orientation. In addition, as long as the temperature of the
system is smaller than the bulk energy gap, the QSH state
should not be affected by increase of temperature. In con-
trast, the point-contact current leads to a significant reduc-
tion of conductance when temperature is increased. By
measuring conductance as a function of the gate voltage
and temperature it is possible to resolve the point-contact
contribution.

In summary, we proposed a purely electrical manipula-
tion and characterization of spin properties of helical QSH

edge states in HgTe quantum wells. A gate-controlled
electric field induces a finite Rashba SOI which can be
employed in tuning the spin orientation of the edge states.
This results in a tunable in-plane spin projection following
smooth deformations of the edges. We introduced a point-
contact geometry where helicity can be probed by a spin-
dependent backscattering accessible in two-terminal
conductance measurements.
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