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The density-dependent mobility of n-type HgTe quantum wells with inverted band ordering has been

studied both experimentally and theoretically. While semiconductor heterostructures with a parabolic

dispersion exhibit an increase in mobility with carrier density, high-quality HgTe quantum wells exhibit a

distinct mobility maximum. We show that this mobility anomaly is due to backscattering of Dirac

fermions from random fluctuations of the band gap (Dirac mass). Our findings open new avenues for the

study of Dirac fermion transport with finite and random mass, which so far has been hard to access.
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Introduction.—Topological insulators, such as HgTe
quantum wells (QWs) [1–3], Bi1�xSbx [4,5], Bi2Se3 [6],
and Bi2Te3 [7,8], provide the most recent examples of the
realization of Dirac fermions in condensed matter physics.
Unlike graphene [9], where two valleys of Dirac fermions
exist, in these new materials Dirac fermions appear only at
a single point in the Brillouin zone. The absence of valley
scattering and the possibility of unconventional types of
disorder, such as a random Dirac mass [10], make electron
transport studies on these materials particularly interesting.
However, the low carrier mobility of most topological
insulators still poses a serious obstacle for transport inves-
tigations of specific scattering mechanisms. The notable
exception is MBE-grown HgTe QWs where transport mea-
surements have been used to detect the quantum spin Hall
state [2] and, more recently, to realize massless single-
valley two-dimensional Dirac fermions [11].

In this Letter, we study both experimentally and theo-
retically a new manifestation of Dirac fermion transport in
n-type HgTe QWs, i.e., the occurrence of a maximum in
the mobility as a function of carrier density. The origin of
the maximum is the competition of two disorder scattering
mechanisms, viz., scattering by charged impurities and by
QW width fluctuations which induce a fluctuating band
gap, or, equivalently, fluctuating Dirac mass. As in other
semiconductor heterostructures [12], in HgTe QWs the
screening of ionized impurities by the carriers results,
initially, in a monotonic increase of the mobility with
increasing carrier density. However, while the impurity
scattering becomes weaker with increasing carrier density,
the other scattering mechanism—well-width fluctua-
tions—becomes increasingly important, leading to a re-
duction of the carrier mobility. Dirac mass disorder
generates scattering between states of opposite momenta,
also called backscattering. Thus, the observed mobility
peak is a clear manifestation of Dirac fermion backscat-
tering in HgTe QWs.

Backscattering of Dirac fermions is most pronounced
in gapped systems [13]. As a consequence, the mobility of

graphene does not show a maximum, but rather a saturation
at high carrier densities (see, e.g., Refs. [9,13–15]), which
has been attributed to charged-impurity scattering.
Although some theoretical studies indicate that mass dis-
order may play a role in the vicinity of the neutrality point
of graphene (see, e.g., Refs. [16,17]), its experimental
identification has remained problematic.
Experiment.—Transport experiments have been per-

formed on modulation doped HgTe=Hg0:3Cd0:7Te QW
structures fabricated by molecular beam epitaxy on
lattice-matched (Cd,Zn)Te substrates. The samples have
been patterned into Hall bar devices with dimensions of
ð600� 200Þ �m2 using a low temperature optical lithog-
raphy process, and covered by a 5=100 nm Ti=Au gate
electrode which is deposited onto a 110 nm thick
Si3N4=SiO2 multilayer gate insulator. Ohmic contacts are
provided by thermal indium bonding. A micrograph of
the structure is shown in the inset of Fig. 1. The samples
have nominal QW widths d, ranging from 5.0 to 12.0 nm,
thus covering both the normal (d < 6:3 nm) and inverted

FIG. 1 (color online). Hall and magnetoresistance for sample
no. 6 at zero gate voltage. The measurement yields an
electron mobility of 1:1� 106 cm�2=V � s and a carrier density
of 4:3� 1011 cm�2. Inset: Micrograph of the Hall bar structure.
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(d > 6:3 nm) band structure regimes [2,11]. The relevant
parameters of all samples are summarized in Table I. We
have performed standard Hall and Shubnikov–de Haas
measurements on these samples in magnetic fields up to
B ¼ 5 T, at a temperature 4.2 K. As an example, Hall and
magnetoresistance data for sample no. 6, which has the
peak highest mobility, are shown in Fig. 1. The carrier
densities and mobility of ungated samples (Vg ¼ 0) are in

the range of 3:0� 1011 cm�2 to 5:5� 1011 cm�2 and
several 105 cm2=V � s, respectively.

The density-dependent carrier mobilities are obtained
from the gate-voltage dependence of the longitudinal re-
sistance at zero magnetic field, while the dependence of the
carrier concentration on gate voltage was deduced from the
Hall voltage measured at a fixed magnetic field of 300 mT.
The thick solid lines in Fig. 2 show the experimentally
observed mobility versus carrier density for the various
HgTe QWs. In high-quality samples with inverted subband
structure ordering (no. 3, no. 4, and no. 6) the mobility
exhibits a distinct maximum for carrier densities in the
range of ð3–6Þ � 1011 cm�2. For samples with a slightly
lower mobility (no. 1, no. 2, and no. 5), a saturation of the
mobility with carrier density is observed.

Model.—In order to explain the unusual dependence
of the mobility on carrier density, we build a model
for the conductivity in HgTe QWs which is based on the
four-band Dirac model of Refs. [1,2]. The effective Dirac
Hamiltonian has the following form:

Ĥ ¼ sz�ðAk̂þMk̂zÞ þDk̂2 �EF þVr þ�Mrsz�z; (1)

where Mk̂ ¼ MðdÞ þ Bk̂2. In Eq. (1) the linear term,

which is proportional to k̂ ¼ �irr, and the constant A
originate from the hybridization of the first electron (E1)
and heavy-hole (HH1) subbands in the quantum well.
These two subbands are represented by the pseudospin
�, whose components �x, �y, and �z are 2� 2 Pauli

matrices. (The real spin degree of freedom is represented
by the Pauli matrix sz.) The term proportional to the
effective Dirac mass Mk̂ reflects the average band gap,

jMk̂¼0j ¼ jMðdÞj, which is determined by the nominal

thickness d of the QW. The k-dependent part of the mass

(the Bk̂2 term) and the parabolic background Dk̂2

take further details of the band dispersion in HgTe QWs
into account [1,2]. Note that the mass term violates the

pseudo-time-reversal symmetry k̂ ! �k̂ and � ! �� of

Hamiltonian (1), which manifests itself in a dependence of
the conductivity on Mk̂. Equation (1) also takes the two

most relevant types of disorder into account: a random
potential due to charged impurities, Vr, and spatial fluctu-
ations of the Dirac mass, �Mr, which are related to devia-
tions of the QW thickness from its average value d. We
assume the n-type transport regime, with the Fermi level
EF in the conduction band, under the weak scattering
condition, kF�F� � 1, where � is the transport relaxation

time and �F and kF ¼ ffiffiffiffiffiffiffiffiffi
2�n

p
are the Fermi velocity and

wave vector, respectively. The conductivity can then be
obtained from the Kubo formula,

�xx ¼ e2@

2�

Z d2k

ð2�Þ2 Tr½v̂xĜ
R
k ~̂vxĜ

A
k� ¼ e2NF�

2
F�; (2)

where ĜR=A
k;� are disorder-averaged retarded and advanced

Green’s functions and v̂x; ~̂vx are current vertices (the tilde
indicates vertex renormalization by disorder in the ladder
approximation [18]). The resulting conductivity �xx is
proportional to the density of states (DOS) per spin at the
Fermi level, NF ¼ kF=2�@�F, and the transport time � ¼
1=

R
2�
0 ð1� cos�Þwð�Þd�, where wð�Þ is the scattering

rate at angle �. Below, we obtain an expression for wð�Þ
from the electron self-energy in the self-consistent
Born approximation (SCBA) and calculate � and the
carrier-density-dependent mobility �ðnÞ ¼ �xxðnÞ=ne.
For this purpose, we assume that the potential and mass

disorder are uncorrelated and completely characterized by
the two-point correlation functions hVrVr0 i ¼ 	V

r-r0 and

h�Mr�Mr0 i ¼ 	Mr-r0 . In k space this leads to the Dyson

equation ĜR
k ¼ ĜR

0k þ ĜR
0k�̂

R
kĜ

R
k for the disorder-

averaged Green’s function ĜR
k where the self-energy �̂

R
k

is given by the standard SCBA expression

�̂ R
k ¼

Z
ð	Vk�qĜ

R
q þ 	Mk�qsz�zĜ

R
qsz�zÞ dq

ð2�Þ2 ; (3)

Ĝ R
0k ¼ 1

2

I þ sz� � ek
�� 
k

; ek ¼ AkþMkzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2k2 þM2

k

q : (4)

The unperturbed Green’s function ĜR
0k describes a

conduction-band electron with dispersion 
k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2k2 þM2

k

q
þDk2 � EF and chirality sz� � ek ¼ 1 (I

is the unit matrix). The solution [18] for the Green’s

TABLE I. Sample and disorder parameters (the other parameters of the model are fixed:
" ¼ 15, A ¼ 0:38 eV � nm, B ¼ 1:2 eV � nm2, and D ¼ 0:85 eV � nm2).

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

Nominal well width (nm) 5.7 6.3 7 7 7.5 12

Max. mobility (105 cm�2=V � s) 1.32 2.96 3.71 4.76 3.33 12.27

M (meV) 10 0 �12 �12 �15 �24
nið�1010 cm�2Þ 8 3.41 2.95 2.55 4.56 1.09

	Mð�10�3Þ 1.65 0.5 1.65 0.91 0.43 0.33
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function ĜR
k ¼ 1

2 ðI þ sz� � ekÞ=ð�� 
k þ i@
2�el

Þ contains

the finite elastic lifetime �el ¼ 1=
R
2�
0 wð�Þd�, where the

scattering rate wð�Þ at angle � is given by

wð�Þ ¼ NF

@

�
ð	V

2kFj sin�=2j þ 	M
2kFj sin�=2je

2
?Þcos2

�

2

þ ð	V
2kF j sin�=2je

2
? þ 	M

2kFj sin�=2jÞsin2
�

2

�
: (5)

Here e? ¼ MkF=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2k2F þM2

kF

q
is the out-of-plane compo-

nent of the unit vector ek at jkj ¼ kF [see Eq. (4)].
Analyzing Eq. (5), one notes that the first term vanishes

at � ¼ �. This is the well-known absence of backscattering

in the limit of massless Dirac electrons [13] [this behavior
is plotted as the gray (red) curve in Fig. 3(a)]. In gapless
Dirac materials, the pseudospin � points along k, and,
therefore, states with k and �k are orthogonal to each
other, i.e., unavailable for scattering. The most essential
distinction between HgTe quantum wells and the zero-gap
case is the second term in Eq. (5), which actually has a
maximum at the backscattering angle � ¼ �. This term
originates from the finite Dirac massMksz�z and its spatial
fluctuation �Mrsz�z. Both of these result in an out-of-
plane pseudospin component �z; hence, the opposite k
states are no longer orthogonal and large-angle scattering
now becomes possible [cf. the black curve in Fig. 3(a)].
Figure 3(b) shows that the backscattering is enhanced with
increasing carrier density n, which accounts for the non-
monotonic behavior of �ðnÞ observed in Fig. 2.
To proceed further, we make specific assumptions for

the correlation functions:

	Vk ¼ nið2�e2Þ2=ð"jkj þ 4�e2NFÞ2; 	Mk ¼ A2	M; (6)

where 	Vk is the usual correlation function of screened

Coulomb impurities [13,14] with the concentration ni
and the average dielectric constant, " � 15, of the
HgTe=CdTe QW. 	Mk is normalized such that 	M is
a small dimensionless parameter, which guarantees
that �M is small compared with the leading linear
term �AkF in Hamiltonian (1). Since �M is caused

2 4 6 810x 10x 10x 10x0
11 11 11 11

10x1 5

10x2 5

10x3 5

4 10x 5

4 10x 5

(c
m

 /V
s)

µ
2

(c
m

 /V
s)

µ
2

8 10x
1111

6 10x2 10x
11

5 10x 5

0

1

2

6

8

1.2

10x

10x

5

0
4 10x0

11

6

3

4

5

2

5

6

3,4

110

0

−10

−20

6 7 98 10 11 12

d (nm)

(m
eV

)
M

n

n

(cm   )−2

(cm   )−2

FIG. 2 (color online). Mobility� versus carrier densityn for six
HgTe QWs (1–6). The experimental �ðnÞ dependence (thick
lines), including the appearance of the maximum, agrees well
with our model [thin gray (red) lines] that takes into account the
competition of charged-impurity disorder and QW thickness fluc-
tuations. Inset: Band gapM versusQW thickness d [sample 1 has a
positive band gap, sample 2 has approximately zero-gap, while the
rest 3–6 are in the inverted regime]. The pronounced maximum is
observed in high-quality inverted samples 3, 4, and 6 where the
impurity concentration is sufficiently low (see also Table I).
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FIG. 3 (color online). (a) Polar plot of the angular dependence
of the normalized scattering rate wð�Þ for massless and massive
(M ¼ �15 meV and 	M ¼ 1:5� 10�3) Dirac fermions [see
Eqs. (5) and (6)]. Massive carriers show strong backscattering
at angles �=2< �< 3�=2. (b) Polar plot of the normalized
function wð�Þ for different carrier densities n in the inverted
regime (M ¼ �15 meV and 	M ¼ 1:5� 10�3). The large-angle
scattering is enhanced with increasing n, which accounts for the
nonmonotonic mobility �ðnÞ in Fig. 2.
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by fluctuations of the QW thickness, 	M is independent of carrier density. As shown below, this approximation yields an
excellent agreement with the measurements. Using Eqs. (2), (5), and (6) we find the mobility �ðnÞ ¼ �xx=ne:

�ðnÞ ¼ 4e=h

ni½	V1 ðnÞ þ 	V2 ðnÞe2?ðnÞ� þ n	M½3þ e2?ðnÞ�A2=@2�2
FðnÞ

; (7)

where

e?ðnÞ ¼ ðMþ 2�BnÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�A2nþ ðMþ 2�BnÞ2

q
; (8)

	V1 ¼
Z �

0
d�sin2�½1þ "@�FðnÞe�2 sin�=2��2; (9)

	V2 ¼ 4
Z �

0
d�sin4�=2½1þ "@�FðnÞe�2 sin�=2��2: (10)

Using Eq. (7) we can quantitatively reproduce all experi-
mental curves for �ðnÞ in Fig. 2 using the disorder pa-
rameters ni, 	

M and band gap M indicated in Table I. The
values of M obtained from this fit agree well with those
obtained from band structure calculations and the analysis
of the experimental Shubnikov–de Haas oscillations.

Discussion.–Using the theoretical model presented in
the previous section, we can now explain the observed
nonmonotonic dependence of �ðnÞ as follows. The initial
increase in �ðnÞ results from the impurity screening: it
reflects the density dependence of the Fermi velocity �FðnÞ
which enters the screened impurity potential via the DOS
in Eq. (6) [see also Eqs. (9) and (10)]. Similar behavior was
found in conventional doped heterostructures [12].
However, here �FðnÞ is specific to the massive Dirac
Hamiltonian (1). Furthermore, for the inverted quantum
wells 3–6, the mobility is additionally enhanced due to the
reduction of the total Dirac gap �jMðdÞj þ 2�Bn at low
carrier densities n [cf. Eq. (8)]. This leads to a more rapid
initial increase in �ðnÞ compared to sample 1, which has a
normal band structure, and the zero-gap sample 2. At
higher carrier densities the mobility starts to decrease for
all the inverted samples, most pronouncedly so for the
high-quality samples 3, 4, and 6. Since the estimated
impurity concentration is lowest for these samples (see
Table I), we attribute this decrease to the fluctuations of
the QW width (Dirac mass), accounted for by the term
/ n	M in Eq. (7). Intuitively, the reduction of the mobility
can be explained by the fact that the rate of scattering off
the well-width fluctuations grows proportionally to the
carrier DOS NFðnÞ because more states become available
for backscattering as the Fermi surface size increases with
n [see Eqs. (5) and (6)].

From the fits we estimate the amplitude of the well-
width fluctuations, �d, to be of the order of 0.2–0.3 nm,
which is obtained by integrating the correlation function
of the thickness fluctuations, h�dr�dr0 i ¼ h�Mr�Mr0 i=
M0ðdÞ2, over the area. This integral is a measure of the

typical height �d times length L of the fluctuation: L�d�
A

ffiffiffiffiffiffiffi
	M

p
=jM0ðdÞj � 0:7 nm2, where we take A ¼ 0:38 eV �

nm and 	M ¼ 10�3 from Table I and the gap derivative
jM0ðdÞj � 17 meV � nm�1 from the inset of Fig. 2. For a
realistic sample L � �d, thus we estimated the ratio
L=�d � 10, which yields �d � 0:26 nm. The result is in
good agreement with x-ray reflectivity data on HgTe QW
structures of similar quality [19].
Conclusions.—We have shown both experimentally and

theoretically that the density-dependent mobility of high-
quality HgTe quantum wells with an inverted band struc-
ture exhibits a maximum. While the initial increase in the
mobility is mainly due to scattering at screened charged
impurities, the decreasing part is associated with the band
gap fluctuations that generate mass disorder for Dirac-like
fermions in this material. Our findings thus clearly dem-
onstrate the occurrence of Dirac fermion backscattering in
finite gap systems.
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