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We study the Pauli-Schrödinger equation in a uniformly rotating frame of reference to describe a

coupling of spins and mechanical rotations. The explicit form of the spin-orbit interaction (SOI) with the

inertial effects due to the mechanical rotation is presented. We derive equations of motion for a wave

packet of electrons in two-dimensional planes subject to the SOI. The solution is a superposition of two

cyclotron motions with different frequencies and a circular spin current is created by the mechanical

rotation. The magnitude of the spin current is linearly proportional to the lower cyclotron frequency.
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Introduction.—Recently much attention has been paid to
the control and generation of spin currents, i.e., the flow
of electron spins in the field of spintronics [1]. Since the
spin current is a nonconserved quantity, the utilization of
spin currents is much more challenging than that of charge
currents. A central concept of spintronics is the transfer
of spin angular momentum based on angular momentum
conservation. Experimental developments in the last de-
cade have allowed us to exchange the angular momentum
among conduction electron spin, local magnetization, and
photon polarizations. These phenomena give birth to a
variety of functions [2], and have accelerated the develop-
ment of magnetic random access memory (MRAM) [3].

In this context, a remaining form of angular momentum
carried by condensed matter systems is mechanical angular
momentum due to the uniform rotation of a rigid body.
Using this mechanical angular momentum in spintronics
will permit the mechanical manipulation of spin currents.
However, the effects of mechanical rotation on a spin
current have not been demonstrated so far.

In this Letter, we derive the fundamental Hamiltonian
with a coupling of spin currents and mechanical rotations
from the generally covariant Dirac equation. The introduc-
tion of mechanical rotations involves extending our physi-
cal system from an inertial to noninertial frame. The
dynamics of spin currents is closely related to the spin-
orbit interaction (SOI), which results from taking the low
energy limit of the Dirac equation.

Figure 1 illustrates the relation between mechanical
rotation, magnetization, and spin current. The coupling
of the magnetization and a spin current has been inves-
tigated extensively in terms of spin transfer torque [4,5],
spin pumping [6], and spin motive force [7], i.e., the key
technologies of spintronics. On the other hand, the cou-
pling of a mechanical torque and the magnetization was
studied long time ago. In the middle of the 1910s, the
coupling of mechanical rotations and magnetization was

investigated by Barnett [8], Einstein, and de Haas [9]. They
measured the gyromagnetic ratio and the anomalous g
factor of electrons before the establishment of modern
quantum physics. Recently, several groups have detected
the effects of mechanical rotations on nanostructured
magnetic systems. Mechanical detection of ferromagnetic
resonance spectroscopy has been recognized [10]; the
Einstein–de Haas effect, rotation induced by magnetiza-
tion, is observed in the submicron sized thin NiFe films
deposited on a microcantilever [11], and the nanomechan-
ical detection of a mechanical torque due to spin flips at
the normal-ferromagnetic junction of a suspended nano-
wire has been reported [12]. There is theoretical work on
the effects of a mechanical torque acting on a nanostruc-
tured magnetic system [13–16]. The Einstein–de Haas
effect in Bose-Einstein condensates of atomic gases has
been proposed [17].
Comparing to the well-established coupling of mechani-

cal rotations and magnetization, and that of magnetization
and spin currents, the direct coupling of mechanical rota-
tions and spin currents has not been demonstrated. The
main purpose of this Letter is to link the mechanical
rotation with spin currents.
First, we introduce the Dirac equation in a uniformly

rotating frame. In the low energy limit of this equation,

FIG. 1 (color). Angular momentum transfers between interact-
ing systems.
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we derive up to the order of 1=m2 with electron massm the
Pauli-Schrödinger Hamiltonian for a single electron in-
cluding a SOI modified by a mechanical rotation. It is
then straightforward to extend the derivation to condensed
matter systems in a rotating frame by replacing the cou-
pling parameter of the SOI in vacuumwith that in materials
[18,19]. We derive equations of motion for a wave packet
subject to spin-dependent forces due to the SOI term and
solve them in a particular case. The solution exhibits a
circular pure spin current caused by mechanical rotation.

Dirac Equation in a uniformly rotating frame.—
According to Einstein’s principle of equivalence, gravita-
tion cannot be distinguished from noninertiality. In the
general relativity, both gravitational and inertial effects
are expressed by a metric and a connection in a curved
space-time. Dynamics of a spin-1=2 particle in a curved
space-time is described by the generally covariant form of
the Dirac equation [20]:

½��ðp� � qA� � ��Þ þmc=@�� ¼ 0; (1)

where c and @ are the velocity of light and the Planck
constant, m and q ¼ �e are the mass and charge of an
electron, A� ¼ ðA0;AÞ is the gauge potential, and �� the

spinor connection (see [20], for example). The coordinate-
dependent Clifford algebra in the curved space-time �� ¼
��ðxÞ is satisfying f��ðxÞ; ��ðxÞg ¼ 2g��ðxÞ with the met-
ric g��ðxÞ (�, � ¼ 0, 1, 2, 3). In a uniformly rotating frame
of reference, of which the angular velocity with respect to
an inertial frame is �ðtÞ, the coordinate transformation
from the rotating frame to the inertial frame is dr0 ¼ drþ
ð�� rÞdt. The space-time line element is given by ds2 ¼
½�c2 þ ð�� rÞ2�dt2 þ 2ð�� rÞdtdrþ dr2. The metric
in a uniformly rotating frame becomes g00 ¼ �1þ ð��
r=cÞ2, g0i ¼ gi0 ¼ ð�� r=cÞi, gij ¼ �ij (i, j ¼ 1, 2, 3).

From this metric, we obtain the Clifford algebra and the
spinor connection in the rotating frame as �0ðxÞ ¼ i�,
�iðxÞ ¼ i��i � ð�� r=cÞi, �0 ¼ � ��=2c, �i ¼ 0,

where � ¼ I O
O �I

� �
and � ¼ O �

� O

� �
are the Dirac

matrices and � is the spin operator for 4-spinor defined by
� ¼ @

4i�� �with the Pauli matrix�. Thus, Eq. (1) can be

rewritten as

i@
@�

@t
¼ H�;

H ¼ �mc2 þ c� � � þ qA0 �� � ðr� � þ�Þ;
(2)

where � ¼ p� qA is the mechanical momentum and r is
position vector from the rotation axis. It is well known that,
in classical mechanics, the Hamiltonian in the rotating
frame has the additional term � � ðr� �Þ reproducing
the inertial effects: Coriolis, centrifugal, and Euler forces
[21]. The term � �� is the so-called spin-rotation cou-
pling found in Ref. [22] and also discussed in the context of
neutron interferometry in a stationary laboratory on Earth
[23]. The last term of Eq. (2), � � ðr� � þ�Þ, can be

regarded as a quantum mechanical generalization of the
inertial effects [23] obtained by replacing the mechanical
angular momentum r� � with total angular momentum
r� � þ�.
Pauli-Schrödinger equation in a rotating frame.—In the

low energy limit, the Dirac equation in a flat space-time
reduces to the Pauli-Schrödinger equation by the Foldy–
Wouthuysen–Tani transformation [24,25], which block
diagonalizes the Hamiltonian and is the systematic expan-
sion yielding relativistic corrections in any order of the
inverse mass, Oð1=mnÞ (n ¼ 1; 2; � � � ). We divide the
Hamiltonian (2) into even and odd parts denoted by E
andO, respectively;H ¼ �mc2 þ E þO, E ¼ qA0 �� �
ðr� � þ�Þ,O ¼ c� � ðp� qAÞ. By successive transfor-
mations, the Hamiltonian up to the order of 1=m2 becomes

H ¼ �

�
mc2 þ O2

2mc2
� O4

8m3c6

�
þ E

� 1

8m2c4
½O; ½O; E� þ i@ _O�: (3)

Neglecting the rest energy in Eq. (3), the Pauli-Schrödinger
equation for the upper component of Dirac spinors in the
rotating frame is obtained by

i@
@c

@t
¼ HPRc ; (4)

HPR ¼ HK þHZ þHI þHS þHD; (5)

HK ¼ 1

2m
�2 þ qA0; (6)

HZ ¼ �B� � B; (7)

HI ¼ �� � ðr� � þ SÞ; (8)

HS ¼ �

2@
� � ½� � qE0 � qE0 � ��; (9)

HD ¼ ��

2
div½qE0�; (10)

with �B ¼ q@=2m, � ¼ @
2=4m2c2, S ¼ ð@=2Þ�, and

E 0 ¼ Eþ ð�� rÞ �B: (11)

Equation (4) is the 2-spinor equation for a single electron
in the rotating frame and the Hamiltonian is a 2� 2matrix
operator. In this expansion, the Hamiltonian to the order
of 1=m is given by HK þHZ þHI. The spin-independent
HK contains the kinetic energy and the potential energy.
The Zeeman energy HZ contains the g factor of the elec-
tron equal to 2, which, combined with HK, yields the
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coupling with magnetic fields, ðq=2mÞðr� � þ 2SÞ � B.
This contrasts with Eq. (8): the mechanical rotation cou-
ples to the total angular momentum of the electron r�
� þ S. The inertial effects, i.e., Coriolis, centrifugal, and
Euler forces, are reproduced by HI and � � S is the spin-
rotation coupling term. The expansion of the order of 1=m2

yields HS and HD, which are the SOI and Darwin terms
with the mechanical rotation, respectively. In the absence
of the mechanical rotation, � ¼ 0, these terms reduce to
the usual SOI and Darwin terms in a flat space-time. In the
case of � � 0, we find that ‘‘the electric force’’ qE is
modified by an additional term ð�� rÞ �B. This can be
interpreted as Lorentz boost with the rotating velocity
�� r. The modified SOI term HS is responsible for the
mechanical manipulation of the spin current as shown
below.

Renormalization of SOI.—In vacuum, the contribution
of HS to HI is negligible, provided that the dimensionless
spin-orbit coupling parameter �SO ¼ �ðmvÞ2=@2 ¼
ðv=2cÞ2 � 1. However, the effect from the SOI can be
enhanced in condensed matter systems yielding renormal-
ization of the coupling � with that of materials. Using

Fermi momentum @kF as mv, �SO equals to ~�k2F where ~�
is a enchanced spin-orbit coupling parameter. The renor-
malization depends on detailed electronic structures and
electron correlations [26,27]. In the case of Pt, the dimen-
sionless coupling �SO is estimated as 0.59 using the
nonlocal measurement of the spin Hall effect [28,29].
Electrons in a noninertial frame cannot distinguish rota-
tional effects ð�� rÞ �B in Eq. (9) from electric fieldsE.
Therefore, the coupling constant of ð�� rÞ �B is renor-
malized in the same manner as that ofE. Consequently, the
effect due to the SOI in a rotating frame can be sizable
effects as shown below in the large SOI systems
[26,27,30,31].

Circular spin current because of mechanical rotation.—
To clarify physical meanings of the Pauli-Schrödinger
equation in a uniformly rotating frame, we investigate
the equations of motion for operator r, m€r ¼ F , where a
quantum mechanical ‘‘force’’, F ¼ ½mv; HPR�=i@þ
m@v=@t, with v ¼ ½r; HPR�=i@. Ehrenfest’s theorem leads
to equations of motion for an electron wave packet by
taking the expectation values with a certain Heisenberg
state jc i [19]. Since the full expression forF is lengthy, in
this Letter we show a particular case:E ¼ 0,B ¼ ð0; 0; BÞ,
� ¼ ð0; 0;�Þ, and B a constant. In this case, the in-plane
forces hF i? ¼ ðhF xi; hF xi; 0Þ are spin diagonal and we
focus on the electron motion in the xy plane. Up to the
order of �=!c with !c ¼ qB=m, the equations of motion
for the center of mass of the electron wave packet is

€R� þ a�	y _R� � b�R� ¼ 0; (12)

where Rþ, R� are the wave packet’s position vector
of up- and down-spin electron, the 90� rotation operator

in the xy plane 	y ¼ 0 1
�1 0

� �
with a� ¼ ð1� 
Þ!c,

b� ¼ �
!2
c, 
 ¼ �SOð@�=2�FÞ. 
 is the dimensionless

parameter which separates the electron motion into fast
and slow modes. This parameter consists of the dimension-
less SOI coupling �SO and the ratio of spin-rotation cou-
pling energy @� to the Fermi energy �F ¼ @

2k2F=2m.
Because of j
j � 1 and a� � !c, we obtain the solution
of Eq. (12) as

R�ðtÞ ¼ e!ct	y	yR
ð1Þ
� þ e�
!ct	yRð2Þ

� ; (13)

whereRð1Þ
� ¼ _R�ð0Þ=!c andR

ð2Þ
� ¼ R�ð0Þ � _R�ð0Þ=!c.

The first term corresponds to the rapid cyclotron motion
due to the Lorentz force, qv� B, with frequency !c and

radius jRð1Þ
� j. The second term describes the slow circular

motion with the velocity v�d ¼ �R
!c�̂ where �̂ is the

azimuthal unit vector and radius R ¼ jRð2Þ
� j, which is

caused by spin-dependent central forces due to the SOI
and the mechanical rotation. Let us consider an initial
condition in which jRþð0Þj ¼ jR�ð0Þj and j _Rþð0Þj ¼
j _R�ð0Þj. Though both up- and down-spin electrons move
on a circle around the z axis with radius R, each propagates
in the opposite direction due to spin dependence of the
second term of Eq. (13) which originates from the SOI with
a mechanical rotation. This solution shows that the me-
chanical rotation causes a circular (pure) spin currents in a
rotating frame (Fig. 2). The spin current is obtained as

Js ¼
P


¼�
en
v
d ¼ 2enR
!c�̂ with the electron den-

sity n
 ¼ n. In the case of B � 1 T, � � 1 kHz, �SO �
0:59, kF � 1010 m�1, and R � 0:1 m, the spin current jJsj
becomes about 108 A=m2. This can be investigated using
spin detection methods such as nonlocal spin valves [32],
the inverse spin Hall effect [33] and the real-time imaging
method [34].
The generation of the circular spin currents can be

interpreted as an analogy of the drift of charged particles
in electromagnetic fields. The average velocity of motion
of a charge in crossed a magnetic field B and an external
force F is given by the drift velocity vd ¼ F� B=qB2

FIG. 2 (color). Schematic illustration of electrons’ trajectories
under mechanical rotation� and a magnetic field B. Solution of
equations of motion for wave packet is a superposition of two
cyclotron motions with different frequencies. The drift velocity
of the up-(down-) electron is vþd ðv�d Þ parallel to the azimuthal

direction denoted by �̂.
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[35]. In our case, F corresponds to the spin-dependent
force mb�R� ¼ �m
!2

cR�. Thus, the spin-dependent
drift velocity is v�d ¼ �m
!2

cR� � B=qB2, reproducing

the previous result obtained from Eq. (13).
Conclusion.—We have derived the Pauli-Schrödinger

equation in a uniformly rotating frame of reference thereby
describing the coupling of spin to mechanical rotations.
This equation involves the spin-orbit interaction aug-
mented by a mechanical rotation, which reveals a mecha-
nism for the quantum mechanical transfer of angular
momentum between a rigid rotation and a spin current.
Using the semiclassical equations of motion for electrons
with spin-dependent forces, a circular spin current is
predicted. The magnitude of the spin current is linearly
proportional to the angular velocity of the mechanical
rotaiton, a magnetic field, and the spin-orbit coupling
strength. It should be noted that starting from the generally
covariant Dirac equation is essential when treating spin-
tronics in accelerated frames. The present formalism offers
a route to ‘‘spin mechatronics’’, viz., a strong coupling of
mechanical motion with spin and charge transport in
nanostructures.
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