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Bidirectional motion is an example of collective behavior of molecular motors. It occurs at finite noise

level in a nonequilibrium system. We consider this problem as a first exit problem. We identify the noise

strength by doing an expansion of a master equation and apply the Wentzell-Freidlin theory to define an

effective nonequilibrium potential and provide analytical estimates of the reversal time. Our results match

very well with the results of stochastic simulations.
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Molecular motors are proteins that convert chemical
energy into mechanical work [1]. In many biological situ-
ations, molecular motors acting on cytoskeletal filaments
are connected together by rigid elements, and the state of
one motor depends on the state of all the others. Motor
assemblies display complex collective dynamical proper-
ties which are not observed at the single motor level such as
hysteresis [2,3] and spontaneous oscillations [4–6].

In an assembly with a finite number of motors, noise
leads to a collective effect called bidirectional motion [7]
when the assembly shows successive phases of motion in
opposite directions. This typically occurs in nonpolar sys-
tems with a spatial ‘‘left-right’’ symmetry, for example,
when an external force opposes the motion of the motors,
or when two groups of motors with opposite polarities act
on the same filament in a ‘‘tug-of-war’’ geometry. In this
last case, the state of vanishing velocity is a steady state,
which is not necessarily stable: a spontaneous symmetry
breaking can lead to two possible stable velocities with
opposite signs and the finite noise induces transitions
between the two states, leading to bidirectional motion.
In some circumstances, bidirectional motion requires the
presence of proteins playing the role of a coordination
complex [8], possibly inactivating one group of motors
while the other one is active [9]. However, it is also
observed in minimal in vitro experiments [3,10], where it
can only result from the collective behavior of the motors.

Bidirectional motion gives an example of the impor-
tance of noise in nonequilibrium systems. It has been
studied numerically by solving a master equation [11] or
by using stochastic simulations [7,12]. In the limit of a
large number N of motors, the mean reversal time in-
creases as trev � eN . This Arrhenius-like behavior can be
understood by comparing the motor assembly to a particle
diffusing in a bistable potential. The particle escapes a
metastable state within a time proportional to a
Boltzmann factor, the noise intensity being proportional
to temperature. For the motor assembly, the noise intensity

is inversely proportional to the number of motors, leading
to an exponential variation in N of the reversal time.
In this Letter, we study bidirectional motion analytically.

We identify the noise strength and define an effective
potential to calculate the reversal time. As a first step, we
describe the motor assembly by the rigid two-state model
of Ref. [2]. Other theories of molecular motor assemblies
such as the cross-bridge model [5] or our soft motor model
[13] also show dynamic instabilities and could possibly be
studied by the same approach. In this Letter, we give only
the main steps of the calculations and refer to Ref. [14] for
details.
In the rigid two-state model, the motors are represented

as particles rigidly attached to a common rigid backbone.
Each particle can be in two states, in which it interacts with
the filament. We consider here that one of the states is a
‘‘weakly bound’’ state, where there is no interaction with
the filament. In the other state, the interaction potential
WðxÞ is a periodic function of the coordinate x along the
filament with a period ‘ of the order of a monomer size,
reflecting the filament periodicity. A motor switches be-
tween the two states with transition rates !onðxÞ and
!offðxÞ, which are also periodic in x. A key hypothesis is
that the motor assembly is a nonequilibrium system: de-

tailed balance is not satisfied (!off=!on � eW=kBT).
In an experiment, the motors are either regularly spaced

with a period incommensurate to the filament period (as in
muscles) or uniformly distributed (as in a motility assay).
The random position of the motors introduces then a
quenched disorder. We simplify this situation by assuming
that the motors are positioned on m sites i ¼ 1; . . . ; m
whose coordinates along the backbone are zi ¼ i�, where
� ¼ ‘=m is the distance between two sites. All the motors
at a given site are not physically at the same place, since all
positions on the filament separated by an integer number of
periods are equivalent.
Earlier studies show that thermal noise has little influ-

ence on the reversal time [7]. Here, we neglect thermal
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noise and focus on the stochasticity associated with
binding and unbinding events. Under this assumption the
filament position X evolves in a deterministic way between
two transition events. Let us assume that, at each site i,
there are ni attached motors, whose positions in the refer-
ence frame of the filament are zi � X. Then, in the absence
of any external force, the force balance equation reads
N�v ¼ P

m
i¼1 W

0ðzi � XÞni, where � represents the friction
per motor and v ¼ _X is the velocity of the filament. We
introduce the joined probability Pðfnig; X; tÞ to find the
filament at position X with ni attached motors at site i at
time t. By using an expansion method exposed by
Van Kampen [15], the master equation that describes the
evolution of P can be simplified and transformed into a
Fokker-Planck equation in the limit where the number of
motors at each site N=m is large. We take the continuum
limit � ! 0, and define the motor density in the reference
frame of the filament �ðxÞ ¼ ni=ðN�Þ, with ni the number
of motors at the site located at zi ¼ xþ X. The filament
velocity is then v½�� ¼ R

‘
0 dxW

0ðxÞ�ðxÞ=�, it is a func-

tional of � but it does not depend on X; this allows us to
integrate over X and to obtain a Fokker-Planck equation for
the probability Pð½�ðxÞ�; tÞÞ to find the motor assembly
with a density �ðxÞ at time t:

@P

@t
¼

Z
dx

�

��ðxÞAPþ
Z

dx
Z

dy
�2

��ðxÞ��ðyÞ
BP

2N
;

(1)

where the functions A and B are defined by

A ¼ !offðxÞ�ðxÞ �!onðxÞ
�
1

‘
� �ðxÞ

�
þ v½�� d�

dx
; (2)

B ¼ �ðx� yÞf!offðxÞ�ðxÞ þ!onðxÞ½1=‘� �ðxÞ�g: (3)

In the limit of large N, the noise is weak and the determi-
nistic evolution of the average density is given by _� ¼ �A.

The functional Fokker-Planck equation (1) is difficult to
study in the general case. We choose to investigate the
model for a particular choice of parameters, where the
potential is sinusoidal: WðxÞ ¼ U½1� cosð2�x=‘Þ� and
the transition rates are !onðxÞ ¼ !½�� � cosð2�x=‘Þ�
and !offðxÞ ¼ !½1� �þ � cosð2�x=‘Þ�. With this
choice, the sum of the two rates does not depend on x.
The variable � is the mean fraction of bound motors,
sometimes called the duty ratio, whereas � represents the
amplitude of variation of the transition rates. These hy-
potheses can be seen as an approximation of !on and !off

by their first Fourier mode, which is valid only if they are
weakly varying in space. For this reason, we assume in the
following that � � 1. Our choice of transition rates re-
spects the left-right symmetry and is therefore suitable to
describe a tug-of-war situation or ‘‘symmetric motors.’’ We
choose �> 0: the motors detach more at the bottom of the
potential than at the top, thus breaking detailed balance. At
constant small filament velocity, the mean motor force
amounts to a negative friction N�av [2]. We introduce

the dimensionless activity parameter � ¼ �a=� ¼
2�2U�=ð‘2!�Þ. The force-velocity relation is nonmono-
tonic only above the critical value � ¼ 1, at which there is
a dynamical phase transition. Bidirectional motion can
therefore occur only if � > 1. Finally, we use dimension-
less variables by setting ‘ ¼ ! ¼ � ¼ 1.
We now describe the state of the motor assembly by the

Fourier coefficients of the density defined by �ðxÞ=� ¼P
nan cosð2�nxÞ þ bn sinð2�nxÞ. In the absence of noise,

the evolution of the coefficients an; bn is found from the
equation _� ¼ �A [Eq. (2)]. We find that a0 ! �=� and
that, for n � 2, an and bn relax to 0 at least as fast as !

�1.
These modes fluctuate around their equilibrium position by

a distance N�1=2. After integration over the modes n ¼ 0
and n � 2, we find a Fokker-Planck equation, which de-
scribes the evolution of the quantities a1 ¼ a and b1 ¼ b
that we consider as the components of a vector ~y:

@tP ¼ � ~r � ð ~uPÞ þ ½D=ð2NÞ�r2P; (4)

where the velocity field ~u has components ua ¼ �ðaþ
1� �b2Þ and ub ¼ �ðbþ �abÞ. At lowest order in
� ! 0, the diffusion constant is D ¼ 4�ð1� �Þ=�2.
This clearly shows that the noise is proportional to the
variance of a two-state variable �ð1� �Þ and that it is
reduced when the amplitude of variation of the transition
rates � is increased. The filament velocity is proportional
to b, v ¼ �b=ð2�Þ, whereas a characterizes the internal
state of the motor assembly. The trajectories in the absence
of noise are given by the solutions of the dynamical system
_~y ¼ ~u, and are displayed in Fig. 1 for � ¼ 2:3. There
are two stable fixed points Fþ and F�, with attraction
basins separated by the separatrix b ¼ 0. The separatrix
contains a hyperbolic unstable point H. The two stable
fixed points correspond to the states of positive and nega-
tive velocities of the filament. At weak but finite noise
level, the system does not remain indefinitely close to one
of the stable fixed points: large excursions due to fluctua-
tions eventually bring it close to the separatrix. Once the
separatrix is crossed, it falls to the other stable point,

FIG. 1 (color online). Blue continuous lines: Trajectories in
the absence of noise (solutions of the dynamical system _a ¼ ua,
_b ¼ ub) for � ¼ 2:3. The red crosses indicate the position of the
fixed points. The red dotted line represents the separatrix.
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corresponding to a reversal event of the filament velocity.
The mean reversal time is therefore the mean first passage
time from one stable point to the separatrix.

An important remark is that the vorticity of the velocity

field ~u does not vanish ( ~r� ~u � ~0), so that there is no

potential V such that ~u ¼ � ~rV. This is expected since
molecular motor assemblies are far from equilibrium sys-
tems. It is therefore not possible to estimate the reversal
time from Kramer’s rate theory. However, an effective
nonequilibrium potential can be defined from the
Wentzell-Freidlin theory [16], which can be used to esti-
mate the reversal time [17]. We now briefly present this
method.

In order to define a quasipotential, we assume that the
stationary probability distribution PS of the Fokker-Planck
equation (4) can be approximated by PS ¼
K expð�NS=DÞ. Inserting this WKB ansatz into Eq. (4)
and expanding at lowest order in 1=N gives an equation of

the form H ð ~y; ~rSÞ ¼ 0, which can be interpreted as a
Hamilton-Jacobi equation, with S the classical action and
H the ‘‘Wentzell-Freidlin’’ Hamiltonian H ð ~y; ~pÞ ¼ ~u �
~pþ ~p2=2 [16]. The momentum ~p is related to the action by

~p ¼ ~rS. The dynamical system formed by Hamilton’s

equations ( _~y ¼ ~r ~pH , _~p ¼ � ~r ~yH ) defines trajectories

that minimize the action and therefore maximize the proba-
bility PS: these trajectories are the most likely paths.
Among them, one finds the flow lines or anti-instantons,
that follow the flow, and the instantons which are the most
likely escape trajectories and go against the flow. A particle
observed at a point M far from the stable state is highly
likely to have come from the stable point by following the
most likely trajectory that reachesM [18]. The action S can
be calculated along each instanton and is a measure of the
difficulty to reach a point by using fluctuations. The most
likely paths emanating from the fixed point Fþ are shown
in Fig. 2. The action is minimal on the separatrix at the
hyperbolic pointH: the most likely escape path is therefore
the instanton joining the fixed point Fþ and the hyperbolic
point H. These trajectories are analogous to the

classical trajectories obtained from the WKB approxima-
tion of the Schrödinger equation in quantum mechanics.
The definition of the effective potential S can be used to

calculate the mean escape time in the weak noise limit. The
mean first escape time is evaluated as twice the inverse of
the smallest eigenvalue �1 of the Fokker-Planck equation
(4) with an absorbing boundary condition at the separatrix
[Pða; b ¼ 0; tÞ ¼ 0] [17]. The eigenfunction associated
with �1 is evaluated by using the WKB approximation,
except near the separatrix where one has to do asymptotic
expansions to take into account the absorbing boundary
condition. A key parameter is the ratio 	 ¼
j@aua=@bubjH ¼ ð�� 1Þ�1 of the stable and unstable ei-
genvalues of the velocity field at the hyperbolic point H. If
	> 1, the escape path is perpendicular to the separatrix,
the effective potential S is quadratic in the vicinity of H,
and the reversal time follows an Eyring formula [17]:

2t�1
rev ¼ �1 ¼ KðHÞ

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	�1 det½S;ijðFþÞ�

q
e�SHN=D: (5)

In this equation, SH is the value of the action at H. The
reversal time therefore follows an Arrhenius law with a
preexeponential factor depending on the curvatures of the
potential S at the hyperbolic and stable points. The pre-
factor KðHÞ is calculated by integration along the most
likely escape path of the transport equation: _K ¼ �ð@iui þ
S;ii=2ÞK with the initial condition KðFþÞ ¼ 1. Here, the
coefficients S;ij are the components of the Hessian matrix

S;ij ¼ @yi@yjS and can be numerically integrated along the

most likely escape path [17]. The opposite case (	< 1 or
� > 2) is less similar to an equilibrium problem: the most
likely escape path is tangent to the separatrix (see Fig. 2)
and the effective potential is singular atH. The prefactor K
tends to 0 when approaching the hyperbolic point and the
Eyring formula (5) is incorrect. The mean escape time still
follows an Arrhenius law:

2t�1
rev ¼ lim

a;b!aH;bH

	Kða� aHÞ
2�ðb� bHÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½S;ijðFþÞ�

q
e�SHN=D:

(6)

Equations (5) and (6) are derived in Ref. [17], but we have
corrected factors of 2. The reversal time of a motor assem-
bly can then be written as

FIG. 2 (color online). Most likely paths emanating from the
stable fixed point Fþ for � ¼ 2:3. The effective potential S is
represented by a color code.

FIG. 3 (color online). Circles: Functions SHð�Þ and hð�Þ de-
fined in the text in Eq. (7). Red lines: Analytic estimations of h
and SH close to the dynamic phase transition threshold � ! 1
[SHð�Þ ’ ð�� 1Þ2=2 and hð�Þ ’ ð�� 1Þ=ð� ffiffiffi

2
p Þ].
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trev ¼ !�1h�1ð�ÞeNSHð�Þ=D: (7)

The dimensionless functions SH and h can be computed by
numerically evaluating all quantities appearing in Eqs. (5)
and (6). They are shown in Fig. 3. An interesting result is
that the effective potential barrier, SH, reaches a maximum
value at � ’ 3. Noting that one must have �2 <�ð1� �Þ
so that the transition rates remain positive, the character-
istic number of motorsN0 required to observe bidirectional

motion (defined by trev � eN=N0) is always larger than
N0 > 4=½maxSH� ’ 60. One of our results is therefore
that bidirectional motion cannot be observed for a small
number of motors within our hypotheses. This prediction is
to be compared to the small number of motors required for
bidirectional motion in other models [11].

We also obtained asymptotic expressions for SH and h
when � is close to its critical value 1. In this limit, the
problem can be reduced to a one-dimensional problem and
the first escape time can be calculated using the equilibrium
Kramer’s rate theory. We find SHð�Þ ’ ð�� 1Þ2=2 and

hð�Þ ’ ð�� 1Þ=ð� ffiffiffi
2

p Þ. These asymptotics are plotted in
Fig. 3. In this limit, the effective potential barrier vanishes at
the dynamic transition threshold, SH ! 0, whereas the
characteristic time scale near the transition diverges, as
expected for a second order phase transition. At fixed value
ofN, however, the small noise approximation does not hold
infinitely close to the threshold, and a detailed study of the
joined limits N ! 1 and � ! 1 would require a more
accurate expansion method of the master equation [19].

In Fig. 3 we do not give values of the prefactor h for � 2
½3=2; 3� (or 	 2 ½1=2; 2�). In this range of parameters, we
did not observe the behavior of the prefactorK predicted in
Ref. [17]. This might be due to numerical uncertainties,
although we used a symplectic numerical integration
scheme that efficiently conserves the energy [20]. The
function hð�Þ seems, however, to be continuous and
smooth in this range.

We have also performed stochastic simulations of the
model using the Gillespie algorithm [21], with the same
choice of parameters. The results are shown in Fig. 4.

The analytical estimates match very well with the results
of the simulations, with no adjustable parameters.
In conclusion, we have shown in this Letter that the

reversal events of a molecular motor assembly can be
considered as a first exit problem from the attraction basin
of a stable fixed point. In the WKB approximation, most
reversal events take place on an optimal trajectory, which
brings the system in the vicinity of a hyperbolic fixed point.
This trajectory is a classical path of a Hamiltonian system
and can be numerically estimated to calculate an effective
nonequilibrium potential and provide estimates of the re-
versal time, which correspond very well to the result of
stochastic simulations. For motor assemblies, we find no
deviation from an Arrhenius law for the reversal time,
although the system is out of equilibrium. We do not
know whether deviations from an Arrhenius law could be
observed with other sets of hypotheses. The methods that
we have presented here could be applied to more realistic
models of molecular motors in order to provide a better
understanding of fluctuations in molecular motor
assemblies.
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