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Although the parent iron-based pnictides and chalcogenides are itinerant antiferromagnets, the use of

local moment picture to understand their magnetic properties is still widespread. We study magnetic

Raman scattering from a local moment perspective for various quantum spin models proposed for this new

class of superconductors. These models vary greatly in the level of magnetic frustration and show a vastly

different two-magnon Raman response. Light scattering by two-magnon excitations thus provides a robust

and independent measure of the underlying spin interactions. In accord with other recent experiments, our

results indicate that the amount of magnetic frustration in these systems may be small.
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Since their discovery in 2008 [1,2], iron-based super-
conductors have led to extensive studies in the condensed
matter field. Like the high-Tc cuprate superconductors,
the iron pnictides and chalcogenides are quasi-two-
dimensional materials with a layered structure. Both the
copper and iron-based superconductors exhibit antiferro-
magnetic (AFM) order in the parent phases, and super-
conductivity emerges by suppressing magnetism upon
doping. However, there are also clear differences. At stoi-
chiometry, the cuprates are Mott insulators and can be
described by an effective single-band model. On the other
hand, the iron-based pnictide and chalcogenide parent
compounds are multiorbital systems and remain metallic
even in the AFM state. The description of magnetism and
its interplay with superconductivity in this new class of
superconductors remain an active area of research.

There is growing evidence that weak coupling theories
with varying degrees of sophistication and input from den-
sity functional theory (DFT) calculations can quantitatively
describe several experimental findings [3–5]. However,
many aspects of the magnetic properties in these materials
are also remarkably captured by a local moment perspec-
tive. These include the phase diagram with orthorhombic
distortion and AFM order, temperature dependence of uni-
form susceptibility, and neutron studies of spin-wave dis-
persion throughout the Brillouin zone (BZ). It also has been
shown that a local moment model can reproduce the essence
of magnetism from DFT calculations [6]. There are various
reasons why a strong coupling perspective is still relevant.
It provides the potential for a unified framework for under-
standing high-Tc superconductivity derived from electron-
electron interactions. More importantly, Local moment
models are being widely used in experiments to explain
magnetic properties in these systems [7–13].

In the pnictides, proposed theories for their collinear
AFM phase based on localized moments include the spa-
tially anisotropic J1a-J1b-J2 model [14,15], where the cou-
pling is ferromagnetic (FM) in one direction and AFM in
the other, and the strongly frustrated J1-J2 model [16–19],
where collinear antiferromagnetism arises via order by
disorder (see Fig. 1). Similarly, the diagonal double stripe
AFM order in iron chalcogenides can be obtained by either
invoking strong frustration in a J1-J2-J3 model [20] or
utilizing a model with strong spatial anisotropy stemming
from orbital order [21]. These Hamiltonians can lead to
ground states of the same broken symmetry, but they vary
greatly in the degree of magnetic frustration. It is necessary
to distinguish these scenarios and narrow the possible
models for the iron-based superconductors.
The preceding difficulty in some cases could be resolved

by inelastic neutron scattering (INS) experiments. Indeed,
the INS spin-wave spectrum of CaFe2As2 [7] has a local
maximum at momentum (�, �) (in the single iron BZ),
strongly favoring the J1a-J1b-J2 model. However, as

FIG. 1 (color online). Schematics of quantum spin models that
lead to (a) the (�, 0) collinear AFM order in iron pnictides, and
(b) the (�=2, �=2) diagonal double stripe AFM order in iron
chalcogenides.
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high energy spin-wave signals are strongly damped,
interpretations of the neutron results remain disputed
[22]. Moreover, there are also cases where different
Hamiltonians can lead to virtually indistinguishable spin-
wave spectra. Therefore, further studies based on different
measurements appear crucial.

One way to achieve the above goal is by studying
magnetic Raman scattering [23]. Light scattering by two-
magnon flips is dominated by short-range excitations and
sensitive to details of the exchange couplings. This probe
was instrumental in the first accurate determination of the
exchange constants in cuprate superconductors [24].

In the present study, following the Fleury-Loudon (FL)
formalism [25,26], we investigate the two-magnon Raman
spectra for strongly frustrated models and spatially
anisotropic models that are unfrustrated. Using exact
diagonalization (ED) and spin-wave theory, we find that
in strongly frustrated models the two-magnon peak appears
at relatively low energies. Strong frustration implies
abundant low-energy configurations, which thereby pro-
vides symmetry-dependent pathways for low-energy two-
magnon flips. In contrast, in unfrustrated models the
two-magnon peak occurs at a higher energy, closer to twice
the single-magnon bandwidth. Magnetic Raman scattering
thus can be a robust and independent measure of the
underlying spin interactions.

We study quantum spin models on a square lattice

H ¼ X

ij

Jij
2
Si � Sj; (1)

where Jij are short-range exchange couplings up to the

third nearest-neighbor (NN). Depending on the interaction
parameters, the model can support ground states of differ-
ent broken symmetries, such as the (�,0) collinear AFM
order or the (�=2, �=2) diagonal double stripe order. The

FL Raman scattering operator Ô is given by [23]

Ô ¼ X

i;j

�ijðêin � d̂ijÞðêout � d̂ijÞSi � Sj; (2)

where the coupling strengths �ij are proportional to the

exchange interactions Jij, d̂ij is the unit vector that

connects lattice sites i and j, and êin and êout are the
incident and scattered photon polarizations, respectively.
Specifically, we will consider the following light-
polarization geometries,

êin ¼ 1
ffiffiffi
2

p ðx̂þ ŷÞ; êout ¼ 1
ffiffiffi
2

p ðx̂� ŷÞ for B1g;

êin ¼ 1ffiffiffi
2

p ðx̂þ ŷÞ; êout ¼ 1ffiffiffi
2

p ðx̂þ ŷÞ for A0
1g;

(3)

where we note that A0
1g transforms as A1g � B2g [23]. With

a given scattering operator Ô, the two-magnon Raman
cross-section is given by Rð!Þ ¼ �ð1=�ÞIm½Ið!Þ�, where

Ið!Þ �
�
�0

��������Ô
y 1

!þ E0 þ i��H
Ô
���������0

�
: (4)

Here, j�0i is the ground state with energy E0.

Below we perform spin one-half (S ¼ 1=2) calculations
in systems with a (�,0) collinear AFM order, and spin one
(S ¼ 1) calculations in systems with a (�=2, �=2) diago-
nal double stripe order. These calculations are relevant
since in the pnictides the Fe moment is unexpectedly small
(ranging from 0.3 to 0:9�B), while in the chalcogenides the
moments (� 2�B) are much larger [27]. For the S ¼ 1=2
case, we perform ED calculations on square lattices of 16,
32, and 36 sites. For the S ¼ 1 case, we focus on a 16-site
cluster as the Hilbert space is substantially larger. We
further compare the calculations with spin-wave theory
and comment on the effects of S.
We first discuss the case of (�, 0) AFM order. We

consider (i) a frustrated J1-J2 model with J1 ¼ J2 and
(ii) the spatially anisotropic J1a-J1b-J2 model, as depicted
in Fig. 1(a). For the latter we take J1b ¼ �0:1J1a and
J2 ¼ 0:4J1a as reported by INS measurements on
CaFe2As2 [7]. In this case, even though (J1a þ J1b) is
comparable to 2J2, the system remains unfrustrated.
Figure 2 shows the two-magnon Raman spectra. In the

36-site ED calculations, the J1-J2 model has a B1g peak at

�SJ1, while in the A
0
1g channel it is at�6SJ1. On the other

hand, for the J1a-J1b-J2 model the two-magnon excitation
appears at �7SJ1a in both polarizations. We note that
while finite-size effects give small corrections to the
Raman resonance energy, the clear qualitative difference
in the B1g channel between the two models is robust,

depending weakly on cluster sizes.
The sharp distinction in the B1g two-magnon response

is related to the difference in the amount of magnetic
frustration. In both models, the single-magnon bandwidth
is roughly the same [28]; however, their magnon spectral
weights are rather distinct. In the J1a-J1b-J2 model, the
magnon density of states (DOS) diverges at the top of the

FIG. 2 (color online). The Fleury-Loudon two-magnon Raman
cross-sections calculated with S ¼ 1=2 exact diagonalization. In
the frustrated J1-J2 model, the B1g two-magnon excitation

appears at �SJ1, an energy much lower than twice the single-
magnon bandwidth.
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single-magnon band, similar to that in the Heisenberg
model. On the other hand, in the frustrated J1-J2 model a
large spectral weight is distributed at lower energies [29].
In general, a substantial low-energy magnon DOS as im-
plied by frustration provides pathways for low-energy
two-magnon flips [30,31].

The low-energy B1g mode of the J1-J2 model can be

related to the proximity of the system to a disordered phase
characterized by either a quantum spin liquid or a valence
bond solid (VBS). At a transition to a phase lacking
magnetic order, one expects singlet modes with appropri-
ate quantum numbers to soften to zero energy [32]. Close
to such a critical point low-energy excitations would ap-
pear. For a quantum spin liquid, low-energy singlets may
appear in all light polarizations, while for a VBS phase
low-energy singlets may appear only in specific channels.
Our finding of a low-energy excitation in B1g and not in

A0
1g implies a nearby VBS phase with columnar dimers,

since this state has the right symmetry [33,34].
To compare the calculations to experiments, we convert

our results into physically measurable units. By fitting to
the J1a-J1b-J2 model, an SJ1a � 50 meV has been reported
by neutron scattering experiments on CaFe2As2 [7].
Therefore, the 36-site ED calculation indicates a B1g

two-magnon peak at 7:4J1a � 3000 cm�1. Anisotropic ex-
change couplings are also found in BaFe2As2 [8] and
SrFe2As2 [9], with a slightly different energy scale. Even
with a material dependence and possible corrections due to
finite-size calculations, the two-magnon peak in an unfrus-
trated J1a-J1b-J2 model is clearly at an energy several times
higher than SJ1a. On the other hand, for a J1-J2 model with
the same exchange energy scale, a B1g two-magnon peak

occurs around a few hundred wave numbers. As in the
cuprates [35], the absence of a low-energy B1g two-magnon

peak in recent experiments implies that magnetic frustra-
tion in the pnictides might also be small [10,11].

To further understand the Raman cross-sections, we
discuss results based on spin-wave theory. In the AFM
Heisenberg model, linear spin-wave theory indicates a
B1g two-magnon peak located at 8SJ, twice the energy of

the single-magnon bandwidth. This value is appropriate
only in the classical S ¼ 1 limit, where magnon-magnon
interactions can be neglected. In systems with a finite S,
two magnons are bound to each other locally in space,
thereby shifting the two-magnon energy to a lower value.
When interaction effects are treated at the mean-field
level, the two-magnon Raman response takes the following

RPA form: Rð!Þ � Im½Ið!Þ=ð1þ �J
S Ið!ÞÞ�, where Ið!Þ

[defined in Eq. (4)] is calculated within the linear
spin-wave approximation, and �J is the mean-field interac-
tion characteristic to the problem. In the S ¼ 1=2 AFM
Heisenberg model, the B1g two-magnon energy is

renormalized to �6SJ. Similarly, in the S ¼ 1=2 ED
calculations for the J1a-J1b-J2 model, the two-magnon
excitation in the B1g channel occurs at �7SJ1a, again

understood by an RPA renormalization of its classical
B1g two-magnon peak at 8SJ1a.

In frustrated models, however, the correspondence
between the classical B1g two-magnon energy and twice

the single-magnon bandwidth fails to describe the Raman
spectra. Based on linear spin-wave theory, while the top of
the single-magnon band is roughly 6SJ1 in the J1-J2
model, its classical B1g two-magnon energy occurs at

zero energy. This zero energy two-magnon resonance is
closely related to the zero mode in the spin-wave spectrum
at momentum (�, �), which is known to be shifted to a
finite energy by quantum fluctuations. The spin-wave the-
ory calculation agrees well with the ED results shown in
Fig. 2, where the B1g two-magnon energy �SJ1 is much

closer to zero, rather than twice the single-magnon band-
width. Moreover, our S ¼ 1 16-site ED calculation indi-
cates that the B1g two-magnon peak moves further down to

�0:7SJ1. The distinction in the two-magnon response thus
serves as a clear benchmark to distinguish the J1-J2 and the
J1a-J1b-J2 models.
We next focus on situations where the model

Hamiltonian [Eq. (1)] has a (�=2, �=2) AFM ground state
as observed in iron chalcogenides [36,37]. Like the case of
the pnictides, below we discuss two models that have a
similar single-magnon bandwidth but vary in the amount of
magnetic frustration.
In the first case we consider a system which is spatially

anisotropic but unfrustrated. We use parameters from DFT
calculations [15] (in units of meV): SJ1a ¼ �7:6, SJ1b ¼
�26:5, SJ2a ¼ 46:5, and SJ2b ¼ �34:9 [see Fig. 1(b)]. In
the second frustrated case, we use parameters from
Fe1:05Te INS measurements [12] (in units of meV):
SJ1a ¼ �17:5, SJ1b ¼ �51:0, SJ2a ¼ 21:7, SJ2b ¼ 21:7,
and SJ3 ¼ 6:8. In the latter case a strong frustration is
present, as the NN interactions in both crystal-axes are
FM, and the second NN exchanges are all AFM, indepen-
dent of spin sublattice. In both cases, SJ below is referred
to as the energy scale of the dominant coupling.

FIG. 3 (color online). Two-magnon Raman spectra for models
with a (�=2, �=2) diagonal double stripe AFM order. In both
cases SJ is the energy of the dominant exchange coupling. We
note the plots have a different energy scale.
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Figure 3 shows the two-magnon Raman spectra from
16-site S ¼ 1 ED calculations. In the unfrustrated system,
there is no low-energy two-magnon excitation. The two-
magnon Raman spectra start to show spectral features
between 6� 8SJ, and the cross sections are dominated
by peaks located at �11SJ and 10:5SJ respectively in
the B1g and A0

1g polarizations [Figs. 3(a) and 3(b)]. In

this unfrustrated case, the two-magnon peak is expected
to occur at an energy close to twice the single-magnon
bandwidth [see Fig. 4]. On the other hand, when the system
is frustrated there is a substantial low-energy two-magnon
weight between 1� 3SJ [Figs. 3(c) and 3(d)]. These re-
sults show a clear difference in the two-magnon Raman
response between the two models.

As mentioned previously, the distinction in the two-
magnon Raman spectra is not caused by a difference in
the single-magnon bandwidth. As shown in Fig. 4, the
magnon dispersion from spin-wave theory [12,20] and
the dynamical structure factor Szzðq; !Þ from ED calcula-
tions both indicate a similar magnon bandwidth of the two
models. However, in a frustrated model the magnon DOS is
no longer dominated by zone boundary magnons, and an
estimate based on twice the magnon bandwidth fails to
describe the two-magnon Raman profile.

We last note that recent Raman scattering experiments
do not suggest the existence of low-energy two-magnon
excitations in the chalcogenides [13]. This implies that
weakly frustrated but spatially anisotropic models based
on orbital order [21] might be relevant. When there is an
ambiguity or freedom in fitting the neutron scattering spin-
wave spectra to localized model models, additional experi-
ments such as Raman scattering can be helpful for pinning
down the interaction parameters.

In summary, we have calculated the two-magnon Raman
spectra for various spin models proposed for the iron-based
superconductors. We have shown that a distinct two-
magnon Raman response can result between models that
vary in the level of magnetic frustration. Complementary to
neutron scattering, magnetic Raman scattering detects
short-wavelength spin fluctuations and can serve as an
independent measure of the underlying spin interactions.
Together with recent experiments, our results favor spatially
anisotropic models, implying that the amount of magnetic
frustration in the pnictides and chalcogenides is small.
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