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We describe a new regime of magnetotransport in two-dimensional electron systems in the presence of
a narrow potential barrier. In such systems, the Landau level states, which are confined to the barrier
region in strong magnetic fields, undergo a deconfinement transition as the field is lowered. Transport
measurements on a top-gated graphene device are presented. Shubnikov—de Haas (SdH) oscillations,
observed in the unipolar regime, are found to abruptly disappear when the strength of the magnetic field is
reduced below a certain critical value. This behavior is explained by a semiclassical analysis of the
transformation of closed cyclotron orbits into open, deconfined trajectories.
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Electron cyclotron motion constrained by crystal
boundaries displays interesting phenomena, such as skip-
ping orbits and electron focusing, which yield a wealth
of information on scattering mechanisms in solids [1,2].
Since the 1980s, semiconducting two-dimensional electron
systems have become a vehicle for investigating the inter-
play between gate-induced potential and cyclotron motion.
A variety of interesting phenomena was explored in these
systems, including quenching of the quantum Hall effect
[3,4], Weiss oscillations due to commensurability between
cyclotron orbits and a periodic grating [5], pinball-like
dynamics in 2D arrays of scatterers [6], and coherent
electron focusing [7].

The experimental realization of graphene [8], a new
high-mobility electron system, affords new opportunities
to explore effects that were previously inaccessible. Here
we focus on one such phenomenon, the transformation
of the discrete Landau level spectrum to a continuum of
extended states in the presence of a static electric field.
Previous attempts to induce sharp potential barriers in
III-V semiconductor structures have been limited by
the depth at which the two-dimensional electron system
is buried—typically about 100 nm below the surface [9].
In contrast, electronic states in graphene, a truly two-
dimensional material, are fully exposed and thus allow
for potential modulation on ~10 nm length scales using
small local gates and thin dielectric layers [10-13].

To probe the phenomena of interest, barrier widths must
be comparable to the magnetic length €5 = (hc/eB)'/?.
This condition gives characteristic fields as low as 30 mT
for systems such as GaAs. Magnetic oscillations are nearly
washed out at such fields, making the effects described
below hard to probe in GaAs structures. In contrast, the
gate widths available in graphene translate to much higher
fields of a few tesla, making graphene the system of choice
for this experiment.

The behavior of interest is illustrated by a toy model
involving the Landau levels of a massive charged particle
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in the presence of an inverted parabolic potential U(x) =
—ax?, which is uniform along the y direction. Competition
between the repulsive potential and magnetic confinement
gives rise to a modified harmonic oscillator spectrum
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for B> B., where m is the particle mass, p, is the
y component of momentum, and B, = v/2ma/e is the
critical magnetic field strength. For strong magnetic field,
B > B, the spectrum consists of discrete (but dispersive)
energy bands indexed by an integer n, whereas for B = B,
the spectrum is continuous even for fixed p,,. This behavior
can be understood quasiclassically in terms of transforma-
tion of closed cyclotron orbits into open orbits, which
occurs when the Lorentz force is overwhelmed by the
repulsive barrier potential.
Landau levels of massless Dirac charge carriers subject
to a linear potential U(x) = —eEx exhibit an analogous
collapse of the discrete spectrum [14]:

sn(Py) = iUF VznhEB(l - :82)3/4 - Bvay’ (2)

where n =0,1,2,... and B8 = E/vpB. The transition at
B. = E/vp can be linked to the classical dynamics of a
massless particle, characterized by closed orbits at B > B..
and open trajectories at B < B, [15].

A simple picture of the spectrum (2) can be obtained
from the Bohr-Sommerfeld quantization condition

[xz p(X)dx = wh(n + ),
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where x; and x, are the turning points, y = 0 due to the
Berry phase contribution for Dirac fermions, and

i) = yJle = UP/v} — (p, — eBx?. (4

For linear U(x), this gives the Landau level spectrum (2)
for B > B,. As B approaches B,., one of the turning points
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moves to infinity, indicating a transformation of closed
orbits into open trajectories.

To realize the collapse of Landau levels in an electron
system, several conditions must be met. First, it must be
possible to create a potential barrier that is steep on the
scale of the cyclotron orbit radius. Second, the system must
be ballistic on this length scale in order to suppress the
broadening of Landau levels due to disorder. Graphene
fulfills both conditions. As demonstrated by the recent
observation of Fabry-Perot (FP) oscillations in gated gra-
phene structures [13], transport can remain ballistic even in
the presence of a gate-induced barrier. Thus graphene is an
ideal system for studying the Landau level collapse.

Transport data taken from a locally gated device similar
to that described in Ref. [13] are shown in Fig. 1. Graphene
was prepared via mechanical exfoliation and contacted
using electron beam lithography before being coated with
a 7/10 nm thick hydrogen silsesquioxane/HfO, dielectric
layer. Narrow ( ~ 16 nm) palladium top gates were then
deposited, and the electrical resistance measured at 1.6 K.
Finite element modeling [13] yields the density profile
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FIG. 1 (color online). (a) Differentiated conductance,
dG/dVlg, of a narrow top gate graphene device, pictured in
(c). Fabry-Perot (FP) oscillations appear in the presence of
confining pn junctions. (b) dG/ dVy as a function of B and
Vig- Shubnikov-de Haas (SdH) oscillations are observed at
high B. The fanlike SdH pattern is altered by the barrier: in
the pp'p region it curves, weakens, and is washed out at fields
|B| = B,, Eq. (7), while in the pnp region a crossover to FP
oscillations occurs. Data shown correspond to Vi, = =70 V
[dashed line in (a)]. (c) Top-gated graphene device micrograph
and schematic; top gate width is ~16 nm. (d) Local density of
states (DOS) in the middle of the parabolic barrier. The energy
derivative dN/de [see Eq. (10)], which corresponds to the
measured quantity dG/ dVg, is shown. Dashed parabola marks
the critical field, Eq. (8). Oscillations in the DOS modulate the
rate of scattering by disorder, resulting in the SdH effect [19].

with w = 50 nm, where Ciyhg) and Vigpe) are the top
(bottom) gate capacitance and applied voltage. To elimi-
nate the contribution of the series resistances of the gra-
phene leads, the numerical derivative of the conductance
with respect to the top gate voltage, dG/ dVi, was
analyzed.

At zero magnetic field [Fig. 1(a)], dG/dV,, shows dis-
tinct behavior in four regions in the (Vy,, V) plane,
corresponding to pp’p, pnp, npn, and nn'n doping, where
n (p) refers to negative (positive) charge density and prime
indicates different density. The appearance of FP interfer-
ence fringes when the polarity of charge carriers in the
locally gated region and graphene leads have opposite
signs indicates that the mean free path is comparable to
the barrier width, [, ~ w.

In high magnetic field, a fan of SdH resonances corre-
sponding to Landau levels is seen in both the bipolar and
unipolar regimes [see Fig. 1(b)]. At lower fields, the ob-
served behavior depends on the polarity under the gate. In
the bipolar regime, as B is lowered, the SdH resonances
smoothly evolve into FP resonances. The half-period shift,
clearly visible in the data at B = 1 T, is a hallmark of
Klein scattering [16]. In the unipolar regime, the SdH
resonances bend, becoming more horizontal at lower field.
The oscillations first begin to lose contrast, and then com-
pletely disappear below B. = 4 T (Fig. 2).

The connection between this behavior and Landau
level collapse is exhibited most clearly by a semiclassical
analysis. The SdH resonances arise from an oscillatory
contribution to the density of states at the Fermi level
due to closed trajectories; the Bohr-Sommerfeld condition
(3) with ¢ = & and p, = 0 gives a good estimate for the
positions of those resonances. For a generic barrier poten-
tial, Eq. (3) can be written directly in terms of experimental
control parameters. Using the Thomas-Fermi approxima-
tion, and ignoring the effects of “quantum capacitance”
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FIG. 2 (color online). (a) Traces of the conductance data from
Fig. 1(b) for several magnetic field values. Landau level numbers
are shown next to the corresponding peaks. The SdH oscillations
abruptly disappear in the unipolar (pp’p) region as the magnetic
field is lowered to B = 3 T, and yet persist to much lower fields
in the pnp region. (b) Traces of the calculated local DOS [see
Fig. 1(d)] showing similar behavior. The traces are artificially
offset from each other for visual clarity. In both plots, as the
magnetic field is lowered, higher number Landau Levels collapse
first, indicating a dependence of the critical field B, on energy/
gate voltage.
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and nonlinear screening [17], we define the position-
dependent Fermi momentum kp(x) = 4/47p(x)/g, where
g = 4 is the spin/valley degeneracy. Substituting the rela-
tion € — U(x) = hvpkp(x) into Eq. (4), we obtain

f ) \/4; Wp(x) = (p, — eBxPdx = wh(n + y).  (6)

Interestingly, and somewhat unexpectedly, the quantiza-
tion condition assumes the same form for massless and
massive carriers with g =4 (monolayer and bilayer
graphene); it would thus be trivially modified for GaAs
quantum wells (g = 2 and y = 1/2).

A rough estimate for the critical field can be obtained
by comparing the curvature of p(x) at x = 0 with the
B?x? term in Eq. (6). Near the polarity reversal boundary
Cog Vg T C¢Viy = 0 [white dashed line in Fig. 1(a)],
using the device parameters Cy, = 115 aF/um?,
Vg = =70V, w=50nm, we find B, = (h/ew)X
(TChyVig/€)'* = 5.2 T.

The dependence of B, on experimental control parame-
ters Vi, and Vj,, can be obtained by analyzing the turning
points for the density profile (5). Setting p, =0 gives
hkp(x) = =eBx. Solving this equation and equating the
result to barrier half-width, x,; = *w, we obtain

Bc = (h/eW)J(ZW/eg)(zcbgvbg + Ctgvtg)- (7)

Both the value of B, and its dependence on gate voltages
matches the data quite well [red line in Fig. 1(b)].

The actual density profile is nonparabolic, flattening
outside the top gate region (TGR) on a length scale 2w =
100 nm. Yet, since the magnetic length € is much shorter
than 2w for the fields of interest (B = 1 T), this flattening
does not significantly impact our discussion of the collapse
phenomenon. While the states realized at subcritical
magnetic fields are not truly deconfined due to cyclotron
motion in the region outside the TGR, the corresponding
orbits are very long. For such states, the particle traverses
the TGR, makes a partial cyclotron orbit outside of the
TGR, and finally crosses the TGR again to close the orbit
[Fig. 3(a)]. The net orbit length is a few w, which is much
greater than the orbit size at strong fields (a few €z). The
contribution of long orbits to SAH oscillations will be
suppressed due to spatial inhomogeneity and disorder
scattering; hence the distinction between confined and
deconfined orbits remains sharp despite the flattening of
the potential (also, see a more detailed discussion in the
online supplement [18]).

With that in mind, below we analyze a simple model,
U(x) = —ax*. A simple estimate of the collapse threshold
can be obtained by considering balance between the
Lorentz force and the force due to the electric field, vy B =
—dU/dx. This condition is satisfied for a particle moving
parallel to the barrier with x = =€, £ = evzB/(2a). This
gives an energy-dependent critical field,

FIG. 3 (color online). (a) Long trajectories that extend far
outside the gated region do not contribute to SdH oscillations
(see text). Schematic showing variations in orbit size for the
estimated potential U(x) = hvgy/7p(x), using the density pro-
file, Eq. (5), with B=9, 7, 5, 3, 1 T and p,=0. (b),
(¢) Trajectories for the potential U(x) = —ax* and p, = 0.
Three types of trajectories are shown in momentum space
(b) and position space (c): subcritical (red [medium gray]),
critical (black), and supercritical (blue [dark gray]). The saddle
points in (b) correspond to motion along straight lines x = *=¢ in
(c) where the Lorentz force is balanced by the electric field.

B.(e) = (2/evp)y/—ase, ®)

which increases with detuning from neutrality, as in
experiment.
We treat the problem using the microscopic Hamiltonian

U(x) vpp,> L d
H = , + = — h— =+ y 9
(o W) o= migzine ©
where p, = p, — Bx and p, is the conserved canonical

momentum component parallel to the barrier. We nondi-
mensionalize the problem using ‘“‘natural units”

1/3 2/3
6, = (Wv2a)3 x, = (U_Fh> . B — E(L) ,
a

e\vph

For each value of p, and magnetic field B, we represent
the Hamiltonian as an M X M matrix defined on a grid
in position space, with periodic boundary conditions.
We use the eigenvalues and eigenstates obtained from
diagonalization to evaluate the local density of states
(DOS) in the middle of the barrier,

_ [dry g T AV 6 =0
2 S (e —8,) + 177

n=1

N(e) (10)

with Landau level broadening incorporated through the
Lorentzian width I' = 0.2¢.. In our simulation, a system
of size L = 15x, discretized with M = 1500 points was
used. Averaging with a Gaussian weight was used to sup-
press the effect of spurious states arising due to a vector
potential jump at the boundary,

Uy, (= 0F) = [[avey,, P, )

with o = x,. Oscillations in the density of states (10)
modulate the rate of electron scattering by disorder, and
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thus show up in transport quantities measured as a function
of experimental control parameters, as in the canonical
SdH effect [19].

The resulting local DOS exhibits oscillations which
track Landau levels at high B [Fig. 1(d)]. In the pp'p
case, at lower B, discrete Landau levels give way to a
continuous spectrum in the region inside a parabola
(dashed line) which marks the collapse threshold, Eq. (8).

The DOS exhibits FP fringes in the pnp region at low B,
however without the half-period shift seen in dG/ dVi at
B =1T (Fig. 1). As discussed in Ref. [16], this half-
period shift results from FP interference due to Klein
scattering at pn interfaces. A proper model of this effect
must account for ballistic transport in the system.

The collapse observed in the density of states is related
to deconfinement of classical orbits. The orbits can be
analyzed as constant energy trajectories of the problem

e =vppi+pr+UW), py=py, —eBx. (12

For parabolic U(x) = —ax? the orbits with p, = 0 can be
easily found in polar coordinates p, + ip, = |ple’:

BZ
<1i 1—3sin29), o = UreB” )
€, 4a

M= 1
po  sin’é

with py = vpe?B?/2a [see Fig. 3(b)]. Only real, positive
solutions should be retained; when /&, > 1, the discrimi-
nant in Eq. (13) is negative near § = 77/2 and trajectories
cannot close [blue (dark gray) curves in Fig. 3(b)].
The related orbits in position space can be found from
the relation dy/dx = y/x = p,/p,. giving
dy _ *vp(p, — eBx) ‘ (14)
dx \/[s — U — vi(p, — eBx)?

For p, = 0, we integrate Eq. (14) to obtainy = +{ [[(u +
ele. — 22 +4(e/e. — D] V2du, where u = x%/€2,
€ = vpeB/2a such that e, = af>. The integrand changes
its behavior at the critical energy .. For & > g, the
integrand is real valued for all # and

(2= 0) _ /0 4 ofe, -2
i = .
4 2Je/e, — 1
For & < g, real solutions are divided into two domains

0=u=2—¢/e. — 21 — /e, (closed orbits) and
u>2-—¢e/e, + 21— &/e. (open orbits):

y(x) — yo) L2—8/e.— X0
¢ 2T —¢/e,

The red (medium gray) curves in Fig. 3(c) correspond to
the low energy regime, € < g, where orbits can either be
closed (Landau levels) or open (trajectories for particles
moving far from the barrier). At higher energies, € > ¢,
all trajectories are open. The straight black lines
correspond to the critical orbits of Eq. (8), where the

5)

cosh( (16)

Lorentz force and electric field are balanced. In addition
to the two particular critical trajectories shown, in the limit
e/e. — 1 there is an entire family of critical trajectories
which asymptotically approach these lines.

Interestingly, unlike in the case of the potential obtained
from the Thomas-Fermi model, where the classical turning
points move continuously to infinity as the transition is
approached, trajectories in the parabolic potential are
trapped between the critical separatrix lines. At very low
energies, closed orbits are approximately circular; as the
energy increases towards €., orbits become more and more
elongated, until finally merging with the separatrix at
e = g, (see Fig. 3).

In summary, graphene devices with a barrier induced by
a narrow top gate can be used to probe electronic states on
the spatial scale of a few tens of nanometers. In our
transport measurements, the SdH-type resonances arising
from quantized states associated with closed orbits are
used to directly observe the competition between magnetic
confinement and deconfinement due to electric field. As a
result of this competition, the discrete spectrum of Landau
levels collapses when subjected to a strong external poten-
tial. Experimental observations are found to be in good
agreement with theory.
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