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Observations of Dispersion Cancellation of Entangled Photon Pairs
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An experimental study of the dispersion cancellation occurring in frequency-entangled photon pairs is
presented. The approach uses time-resolved up-conversion of the pairs, which has temporal resolution at
the femtosecond level, and group-delay dispersion sensitivity of =~ 20 fs> under experimental conditions.
The cancellation is demonstrated with dispersion stronger than =10? fs? in the signal ( — ) and idler ( + )

modes.
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The temporal dispersion of classical and quantum states
of light has been of wide interest. In the quantum case, two
remarkable types of dispersion cancellation have been
noted for pairs of frequency-entangled photons. First, in
the Hong-Ou-Mandel two-photon interferometer [1], it has
been observed that the interferogram is independent of any
external group-delay dispersion (GDD) experienced by the
incident two-photon state [2]. The effect was physically
explained in Ref. [2] through the frequency dependence of
the Feynman paths occurring within the interferometer.
A second, distinct type of dispersion cancellation has
been discussed theoretically by Franson [3]. Here, if one
photon of the state is given some amount of GDD, and the
second is given an equal but opposite amount, the effects
cancel and the two-photon state itself is left unchanged.

In subsequent work, the first type of dispersion cancel-
lation has been observed, even, for example, with an
interferogram as narrow as 7.2 fs [4]. On the other hand,
the second type of dispersion cancellation has not been
observed with comparable resolution. At the least, the
GDD insensitivity of the two-photon interferometer makes
it of no use in observing the Franson effect. Instead, the
broadening of Glauber’s G®(7) correlation function [5]
may be used to observe dispersion of photon pairs [6]. This
approach has been employed in observing Franson’s dis-
persion cancellation with a single optical fiber as the dis-
persive element [7] and in an experiment where partial
dispersion cancellation was observed [8].

References [6-8] measure G?(7) from coincidence
rates of detected photon pairs, using detectors with limited
temporal resolution. These resolutions range from 0.2 to
0.8 ns, which implies that quite strong dispersion (in opti-
cal fibers of 0.5-6.5 km length) is necessary to produce
resolvable effects. These efforts are not fully satisfying,
because dispersive effects are better studied on a femto-
second level. However, detector resolution is a long-
standing problem and it seems difficult to make a
significant improvement.

Thus, in the following work, a different approach is
taken and Franson’s dispersion cancellation is studied
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with = 5 orders of magnitude better time resolution. The
method uses up-conversion of entangled photon pairs [9],
which has become feasible for crystals with strong non-
linearities. The up-conversion rate is monitored as a func-
tion of delay 7 between a photon and its pair member [10],
with demonstrated dispersion sensitivity equivalent to a
path of a few millimeters in optical glass. This technique
is analogous to autocorrelation methods of classical pulse
characterization [11] where femtosecond-level resolution
is common, since 7 is determined by mirror position rather
than electronic delay. In one sense, the work here parallels
that of Ref. [2], but with interference replaced by up-
conversion. In another sense, the efforts can be considered
aresponse to a proposal by Harris [12], as will be discussed
later. The approach is to produce a given two-photon state
and then disperse the two modes as desired, in contrast to
different procedures in Refs. [7,8]. It is also notable that
Franson cancellation is nonlocal, but, since the approach
here recombines pairs, it represents a local observation of
this nonlocal effect.

Consider the two-photon state |Wpe) produced by
spontaneous parametric down-conversion (SPDC) with a
monochromatic pump of frequency w,,

|\PDC> o [dwsq)(ws'r wp - ws)

X ei[¢x(w“)+¢i(wpiws)]|a)s>s|wp - ws>ir (1)

where @ is the phase-matching function of the down-
conversion crystal and s and i denote, respectively, the
signal (frequency w,) and idler (frequency w, — w)
modes. The modal phases ¢; are those accumulated
within the nonlinear crystal producing the state, and in
subsequent propagation. Franson’s dispersion cancellation
can be considered the preservation of simultaneity of pairs
[3], although, more fundamentally, it is the GDD invari-
ance of this quantum state itself [13]. By changing the
integration variable to Aw = w; — w, with 0, = 0,/2,
the exponential in Eq. (1) has phase
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where ¢(") denotes & qﬁ”(‘”) |lw,- The n = 2 term of Eq. (2)
represents GDD and often dominates temporal widths; it is

clear that the term vanishes if ¢§2> = —d)l(-z), which is the
cancellation condition of Franson [3,13].

Now, consider the pairwise up-conversion of the state of
Eq. (1) in a second crystal, with a signal delay 7 intro-
duced. Neglecting the transverse wave vector degree of
freedom, the up-converted state is given by [10]

[We) = j do | D, v, — v,

X ei[¢s(ws)+¢i(wp*“’s)]eiw‘v7-|wp>, 3)

where it is assumed that the second crystal has properties
identical to the first, which introduces a factor of ®*, so
|®|? now appears in the integrand. It is seen that | W) has
returned to w,, but has retained the phase terms of [Wpc)
in Eq. (1). Thus any dispersion cancellation in |Wpc) will
exhibit direct consequences in |Wyc). Moreover, these
effects can be readily observed, since the up-conversion
rate R(7) is proportional to the squared modulus of the
integral of Eq. (3).

Here, the experimental principles are straightforward: to
create photon pairs in a given state, introduce oppositely
signed GDD in the signal and idler modes, and recombine
the pairs. The experiment is shown in Fig. 1 and requires
a two-sided extension of a previous approach [10]. The
pump laser (power 1 W, wavelength 532 nm, single fre-
quency) was focused to a 45 pum waist in an MgO-doped,
periodically poled, lithium niobate crystal of length 5 mm.

FIG. 1 (color online). Experimental geometry (not to scale).
SPDC from lithium niobate crystal LN1 is collimated by a lens;
the upper beam (signal side) is sent through a prism compressor,
and the lower beam (idler side) is sent through a shorter prism
compressor and a four-mirror adjustable-delay path. Positive 7
shortens the path and thus advances the idler or, equivalently,
delays the signal photon. The paths are reunited, reflected down-
ward, and focused to up-convert in crystal LN2.

The crystal was temperature controlled (= 50 °C) to phase
match to copolarized, frequency-degenerate, axial photon
pairs. The SPDC emission fell within a cone of =3° half-
angle, and an iris and 75 mm focal length lens collimated
the central 2.3° (6.0 mm diameter) region. The bandwidth
was measured as 117 nm, centered on degenerate wave-
length 1064 nm.

In the collimated beam, transverse momentum conser-
vation implies that a given photon will have its pair mem-
ber directly opposite beam center. As shown in Fig. 1, pair
members were thus separated by inserting the tips of two
prisms above and below beam center, directing the upper
beam (signal photons, say) upward and the lower beam
(idlers) downward, while the pump beam passed both tips
and was absorbed. Each prism was the first of four prisms
(60.0° apex, 30 mm sides, Schott SF10 glass) set in the
symmetrical, minimum deviation arrangement used to ad-
just GDD [11]. The tip-to-tip spacing between the first (or
second) pair of prisms was 500 and 352 mm in, respec-
tively, the signal and idler paths. In addition, the idler
photons reflected from four silver mirrors, with the middle
two mounted on a translation stage to control 7. Both
branches then returned to their initial interspacing and
reflected from two separate silver mirrors, whose adjust-
ment corrected small relative angular misalignments. This
light was focused by a second lens into a second crystal,
with both identical to the first. The up-converted light
passed through a BG39-glass filter, and was coupled to a
multimode fiber leading to a SPCM-AQR-13-FC photon-
counting module.

All prisms were mounted on stages providing translation
perpendicular to the prism base, which allows GDD to be
changed by known amounts. The principle is simple: a
four-prism sequence is often employed to produce negative
net GDD, but translating a prism into the beam increases its
internal glass path, and the net GDD increases proportion-
ally [11]. For the system of Fig. 1, direct ray tracing has
shown that the GDD increases by 105 fs> per mm of
increased glass path in any prism.

More elaborate procedures are employed here to pro-
duce essentially known values of qﬁ(si.). In particular, when
the signal and idler follow the same path and so suffer the
same dispersion, the up-conversion rate has been observed
to maximize when dz(yz) and ¢§2) are nearly zero, for the
path at w,; from the center of the first crystal to the center of
the second [10]. In calculations, the case of Ref. [10] (using
different prisms) was optimized for ¢§2) = d)gz) = 28 fs?,
which compensated higher-order dispersion. These values
are case dependent but small, and it will simply be taken
here that maximized up-conversion implies zero ¢§2,) . The
consequences of this simplification are minor, and only
imply that values of qﬁgi) quoted hereafter should have
small constants added.

The notation adopted is that, for example, P3; refers to
the third idler prism in Fig. 1. To apply the principles
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discussed, prisms P1; and P4, were translated into the
beam and P1; was withdrawn, until al/l SPDC light fol-
lowed the upper path of Fig. 1. The up-conversion rate
was then optimized by adjusting insertions of P1,-P4, so

d)ﬁ) = 0 in this configuration. P1; and P4, were then

withdrawn to their original positions, and P2, and P3;
were inserted by opposite amounts, thus maintaining

d)@ = 0 since the total glass path was unchanged. P1;
was reinserted so that the idler photons followed the lower
path, and 7 was adjusted until up-conversion was observed.
The insertions of P2;-P4; were then set for optimal rate and

thus ¢§2) = 0 (here 7 also had to be varied). Throughout,
broadening effects of prism glass path changes of 0.2 mm
from optimum were observable, which correspond to
GDD changes of only 21 fs?. Again, this is small compared
with GDD introduced later.

Thus, in this optimal state, ¢521) =0 and 7= 0 with
reasonable accuracy. To take data, only three adjustments

were required to control </>§2), d)?), and 7. Prisms P3, and
P3; were mounted on computer-controlled stages of step
size, respectively, 0.01 and 0.10 um. Thus withdrawing
P3; produced negative ¢§2), and inserting P3; produced
positive ¢§2), with values known to high accuracy. For
simplicity, all prism translation was done so as to change
glass path in multiples of 3.500 00 mm (which, from geo-
metrical optics, required translator changes of 2.087 63 mm
for prism parameters quoted), thus producing steps in qﬁfi)
of A = 367 fs?. Glass path changes must be compensated
in 7, and the mirror pair adjusting 7 was mounted on a
third computer-driven stage with 0.01 wm step size, cor-
responding to = 0.07 fs steps in 7.

The signal or idler side power was 32 nW, implying a
photon flux of 1.7 X 10'' s™! in each. The number of
photons per spectral mode [9] follows as n = 0.0055,
consistent with the n < 1 isolated-pair limit implicit in
Eq. (3). This conclusion is supported by the up-conversion
rate’s linear dependence on pump power, showing a log-
log slope of 0.97 at 1 W pump. Further, the up-conversion
rate of unentangled photons is not only of order n?, but is
smaller still due to a bandwidth factor [9]; this is consistent
with data since R(7) will be seen to decay to essentially
zero. Data shown are average rates over 6 s, with statistical
errors from =17 s~ ! in highest signals to =6 s~ ! in base-
lines. The background rate was measured before and after
each scan in 7, with the average subtracted from data.
This was achieved by blocking the path where the signal
and idler sides reunite in Fig. 1 and determining the rate
(=165 s~ !, nearly the intrinsic detector dark rate). Then,
the beam block was replaced by a BG39 filter with negli-
gible infrared but high green transmission. The increase in
rate determined the level of stray pump light (=10 s~ 1),
which was added to the beam-block rate to obtain the
background.

Figure 2 shows R(7) in cases without dispersion cancel-

lation. For d)fi) = 0, R(7) has a peak of nearly 1500 s~ ! at
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FIG. 2 (color online). Cases showing dispersion sensitivity in
R(7). Results are for {¢§2), qﬂfz)} equal to {0, 0} (a), {—A, 0} (b),
{—24, 0} (), {—3A, 0} (d), {0, A} (e), {0, 2A} (f), and {0, 3A} (g),
with A = 367 fs2. Dashed vertical lines denote centroids; note
2X r-width change in (d) and (g).

7 = 0 and presents secondary maxima near *41 fs, with
width and shape similar to previous reports [10]. In the
other cases shown, GDD is introduced in steps of A into
either the signal ( — ) or idler ( + ) mode, so no cancella-
tion is possible. The peak first falls to about half its
original height [Figs. 2(b) and 2(e)], and continues to fall
and broaden as the magnitude of GDD is increased. In the
two cases with strongest GDD effects, the maxima of R(7)
are 15% or less of that with <,i><vzl) = 0, and minima fall near
curve center. Thus Fig. 2 serves to demonstrate that, with-
out cancellation, the effects of GDD are clear in R(7), in
distinct contrast to what follows.

The principal results are shown in Fig. 3, which dem-
onstrate dispersion cancellation in R(7). The values of ¢§2,)
from Fig. 2 are again used, but the cases of Fig. 3 pair
them in the manner expected to produce cancellation.
Throughout all cases, even with (ﬁfl) at levels producing
strong effects in Fig. 2, there is little variation of curve
shape in Fig. 3. The mean peak width (FWHM) is 24.3 fs,
with all cases within a fs of the mean. A modest reduction
(11%) of peak height occurs between Figs. 3(a) and 3(d);
signal levels could be recovered with a small tilt of one of
the final mirrors in Fig. 1, probably due to inadvertent tilt
introduced by the 7 stage for the long path compensation
(=~12.4 mm total) required. However, to maintain 7 fidel-
ity, the experiment was left untouched throughout all
data of Figs. 2 and 3. In summary, the nearly invariant
curves of Fig. 3 are a striking result, and represent a direct
manifestation of dispersion cancellation within the two-
photon state itself.

The positions of peaks in data are a consequence of the
photon transit times in the apparatus. It is readily shown
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FIG. 3 (color online). Demonstration of dispersion cancella-
tion in R(7). Results are for {¢§2), ¢52)} equal to {0, 0} (a),
{=A, A} (b), {—=2A,2A} (c), and {—3A,3A} (d), with A =
367 fs. Dashed vertical lines denote peak centroids, filled
circles denote half-height points, and widths are indicated.

that, when a prism is inserted so as to increase its glass path
by AL, the delay incurred is 24 [N — ml where N is
the relevant index and A# is the prism deflection (here,
A = 56.66° at w,). From the primary peak locations in
Fig. 3 (with AL removed from the signal path and AL
added to the idler path, in multiples of 3.500 00 mm), the
values of N obtained are 1.7287, 1.7282, and 1.7280 in,
respectively, Figs. 3(b)-3(d). The mean (1.7283) is within
0.0002 of the group index of SF10 glass (1.7281 at w,),
which is 0.0259 higher than the usual refractive index
(1.7022). It was first demonstrated that photons travel at
the group velocity in Ref. [2]; the data of Fig. 3 provide a
verification from a different approach.

A classical calculation [14], based on detector cross
correlation, has claimed to predict Franson cancellation.
Elsewhere, this interpretation has been criticized [15]. In
any case, Ref. [14] does not agree with Figs. 2 and 3 since it
predicts a background that is fully absent in data. The local
dispersion cancellation of the two-photon interferometer
[2] does have a classical analog [16], and the local nature of
the different type of cancellation in Fig. 3 cannot preclude
a classical analog here also. However, an inequality has
been derived [17] showing when the level of nonlocal
Franson cancellation is inconsistent with classical theory;
it may be possible to develop a similar inequality, appli-
cable to the experimental conditions (local up-conversion),
to show the cancellation in Fig. 3 to be nonclassical even
though it is local.

A related up-conversion experiment was proposed in
Ref. [12], but with far greater SPDC bandwidth. Only
one of the modes must be compressed and a method has
been proposed [18]. The compressed state is termed a
single-cycle biphoton because the calculated width of
R(7) is only 1.3 times the period at w, [12]. The results
of Fig. 3 are relevant, since they demonstrate that the GDD
of one mode compensates the other, although R(7) is

considerably wider (6.8 times the period at w,) due to
the narrower SPDC bandwidth. Further, there is subtle
evidence in Fig. 3 that this experiment is near its limit of
compression, as may be verified by ray tracing the system
of Fig. 1 to obtain ¢ (w). It is found that the n =3

coefficient [¢§3) - ¢£-3)] of Eq. (2) becomes increasingly
negative in the cases of Fig. 3 and, with a stationary-phase
approximation in Eq. (3), is thus consistent with the in-
creasing right-skewness most apparent in the secondary
maxima of Fig. 3. If R(7) is evaluated from Eq. (3) with a
SPDC bandwidth of, say, 1.5 times that of the experiment,
this skewness becomes objectionable. These results are
not shown, but other methods [18] may be required to
compress larger SPDC bandwidths.

In summary, the dispersion cancellation occurring for
frequency-entangled photon pairs, as proposed by Franson
[3,13], has been investigated. The approach employs
time-resolved up-conversion of the pairs, producing
femtosecond-level resolution and observed GDD sensitiv-
ity of = 20 fs2. The cancellation of more than +10° fs? of
GDD in the signal ( —) and idler ( + ) modes has been
demonstrated. The observations are relevant to current
research on the unusual dispersion effects occurring with
two-photon states.
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