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Recent experiments with heavy ions and planned experiments with ultraintense lasers require non-

perturbative solutions to quantum field theory for predicting and interpreting the results. To propel this

theoretical direction, we solve the nonperturbative problem of an electron in a strong transverse confining

potential using Hamiltonian light-front quantum field theory. We evaluate both the invariant mass spectra

and the anomalous magnetic moment of the lowest state for this two-scale system. The weak external field

limit of the anomalous magnetic moment agrees with the result of QED perturbation theory within the

anticipated accuracy.
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Recent intense interest in strong-field dynamics, ranging
from the anomalous enhancement of lepton production in
ultrarelativistic collisions between heavy nuclei at RHIC
[1] and predicted photon yield depletion at the LHC [2], to
proposals for producing supercritical fields with next-
generation laser facilities [3,4], points to the importance
of developing new methods for solving QED in its non-
perturbative domain. An ideal tool for such problems is
Hamiltonian light-front formalism [see, e.g., Ref. [5]], in
which the gauge theory is quantized on the light front and
the physical states are expanded in a Fock-space basis
developed from the constituents. The Hamiltonian is rep-
resented as an operator acting on these Fock states. Since
time is set along the light front, the ground state of the free
theory is also a ground state of the full interacting theory
and the formalism is Lorentz frame independent.

The light-front Hamiltonian approach provides a real-
ization of Feynman’s covariant ‘‘parton’’ model where the
partons are the elementary fields used to define the Fock-
space basis. It also has the appearance of a standard quan-
tum many-body problem with the necessary quantum field
theory features such as pair creation and annihilation.
Diagonalization of the Hamiltonian provides amplitudes
for evaluating experimental observables that are nonper-
turbative and relativistically invariant such as masses, form
factors, and structure functions. The Fock-space depen-
dence of observables is to be evaluated and one seeks to
eliminate such dependence.

We address the problem of an electron in a transverse
harmonic cavity and solve for its mass spectra and other
observables as a function of the external field strength
over a range spanning the electron mass. To accomplish
this, we evaluate the QEDHamiltonian in light-front gauge
on the light front in a Fock space consisting of electron
states and electron plus photon states. We add the harmonic
oscillator potential in the transverse direction to confine the
system in those directions. We then solve for the eigenval-
ues, eigenvectors, and anomalous magnetic moment. The

nonperturbative analysis presented in this Letter could be
applicable to measurements of the (gyromagnetic) ratio of
the spin precession to Larmor frequencies of a trapped
electron in strong external electromagnetic fields or intense
time-dependent laser fields. This research also serves as a
foundation for solving other quantum field theories at
strong coupling, such as the light-front QCD Hamiltonian
in the nonperturbative domain.
The question arises on how to implement a consistent

renormalization program. Our specific choice is defined
below. With our limits on the Fock space and adopted
renormalization scheme, we can already demonstrate the
effects of mass renormalization but not yet coupling con-
stant renormalization. A full renormalization program will
ensue when we enlarge our Fock-space basis to include
electron-positron pairs. Such pairs produced at RHIC
experience strong time-dependent electromagnetic fields.
The total charge Ztotal ¼ Z1 þ Z2 of the two colliding
nuclei can exceed 137, indicating the need to treat the
production and propagation properties with nonperturba-
tive methods. In particular, the renormalization scale enter-
ing the running QED coupling is set by the photon
virtuality which would be expected to be of order
Ztotal� �me. The renormalization scale p2 appearing in the
electron running mass �mðp2Þ is of similar order. Such a full
renormalization program will also allow comparison with
higher order perturbative calculations such as those for an
electron in a Penning trap [6].
We define our light-front coordinates as x� ¼ x0 � x3,

x? ¼ ðx1; x2Þ, where the variable xþ is light-front time and
x� is the longitudinal coordinate. We adopt xþ ¼ 0, the
‘‘null plane,’’ for our quantization surface. Here we adopt
basis states for each constituent that consist of transverse
2D harmonic oscillator (HO) states combined with discre-
tized longitudinal modes, plane waves, satisfying selected
boundary conditions. This basis function approach follows
[7] and is supported by successful anti-de Sitter-QCD
models [8].
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The HO states are characterized by a principal quantum
number n, orbital quantum number m, and HO energy �.
Working in momentum space, it is convenient to write the
2D oscillator as a function of the dimensionless variable

� ¼ jp?j= ffiffiffiffiffiffiffiffiffiffiffi

M0�
p

, and M0 has units of mass. The ortho-
normalized HO wave functions in polar coordinates (�, ’)
are then given in terms of the generalized Laguerre poly-

nomials, Ljmj
n ð�2Þ, by

�nmð�;’Þ ¼ h�’jnmi

¼
ffiffiffiffiffiffiffiffiffiffiffi

2�

M0�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n!

ðjmj þ nÞ!

s

eim’�jmje��2=2Ljmj
n ð�2Þ;

(1)

with eigenvalues En;m ¼ ð2nþ jmj þ 1Þ�. The HO wave

functions have the same analytic structure in both coordi-
nate and momentum space, a feature reminiscent of a
plane-wave basis.

The longitudinal modes, c k, in our basis are defined
for �L � x� � L with periodic boundary conditions for
the photon and antiperiodic boundary conditions for the
electron:

c kðx�Þ ¼ 1
ffiffiffiffiffiffi

2L
p eið�=LÞkx� ; (2)

where k ¼ 1; 2; 3; . . . for periodic boundary conditions (we
neglect the zero mode) and k ¼ 1

2 ;
3
2 ;

5
2 ; . . . for antiperiodic

boundary conditions. The full 3D single-particle basis state
is defined by the product form

�k;n;mðx�; �; ’Þ ¼ c kðx�Þ�n;mð�;’Þ: (3)

Following Ref. [5] we introduce the total invariant mass-
squared M2 for the low-lying physical states in terms of a
Hamiltonian H times a dimensionless integer for the total
light-front momentum K

M2 þ P?P? ! M2 þ const ¼ PþP� ¼ KH (4)

where we absorb the constant into M2. For simplicity, the
transverse functions for both the electron and the photon
are taken as eigenmodes of the trap. The noninteracting
Hamiltonian H0 ¼ 2M0P

�
c for this system is then defined

by the sum of the occupied modes i in each many-parton
state:

H0 ¼ 2M0�

K

X

i

2ni þ jmij þ 1þ �m2
i =ð2M0�Þ

xi
; (5)

where �mi is the mass of the parton i. The photon mass is set
to zero throughout this work and the electron mass �me is set
at the physical mass 0.511 MeV in our nonrenormalized
calculations. We also set M0 ¼ �me.

The light-front QED Hamiltonian interaction terms we
need are the electron to electron-photon vertex, given as

Ve!e� ¼ g
Z

dxþd2x? ��ðxÞ���ðxÞA�ðxÞjxþ¼0; (6)

and the instantaneous electron-photon interaction,

Ve�!e� ¼ g2

2

Z

dxþd2x? ����A�

�þ

i@þ
ð��A��Þjxþ¼0; (7)

where the coupling constant g2 ¼ 4��, and � is the fine
structure constant taken to be � ¼ 1

137:036 in this work. The

nonspinflip vertex terms of Eq. (6) are / M0�, whereas

spinflip terms are / ffiffiffiffiffiffiffiffiffiffiffi

M0�
p

me. Selecting the initial state
electron helicity in the single electron sector always as
‘‘up,’’ the process e ! e� is nonzero for three out of eight
helicity combinations, and the process e� ! e� is nonzero
only with all four spin projections aligned (two out of 16
combinations), resulting in a sparse matrix.
We implement a symmetry constraint for the basis by

fixing the total angular momentum projection Jz ¼ Mþ
S ¼ 1

2 , where M ¼ P

imi is the total azimuthal quantum

number, and S ¼ P

isi the total spin projection along the
x� direction. For cutoffs, we select the total light-front
momentum, K, and the maximum total quanta allowed in
the transverse mode of each one or two-parton state, Nmax,
such that

X

i

xi ¼ 1 ¼ 1

K

X

i

ki; (8)

X

i

2ni þ jmij þ 1 � Nmax; (9)

where, for example, ki defines the longitudinal modes of
Eq. (2) for the ith parton. Equation (8) signifies total light-
front momentum conservation written in terms of boost-
invariant momentum fractions, xi. Since we employ a mix
of boundary conditions and all states have half-integer
total K, we will quote K values rounded downwards for
convenience, except when the precise value is required.
In Fig. 1 we show the eigenvalues (multiplied byK) for a

nonrenormalized light-front QED Hamiltonian given in
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FIG. 1 (color online). Eigenvalues (multiplied by K) for a
nonrenormalized light-front QED Hamiltonian which includes
the electron-photon vertex and the instantaneous electron-photon
interaction without counterterms. The cutoffs for the basis space
dimensions are selected such that K increases simultaneously
with the Nmax.
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Eqs. (5)–(7), with fixed � ¼ 0:05 MeV and simulta-
neously increasing K and Nmax. The resulting dimension
of the Hamiltonian matrix increases rapidly. For Nmax ¼
K ¼ 2, 10, and 20, the dimensions of the corresponding
symmetric d� d matrices are d ¼ 2, 1670, and 26 990,
respectively.

The number of the single electron basis states, consid-
ering all the symmetries, increases slowly with increasing
Nmax ¼ K cutoff. For Nmax ¼ K ¼ 2, 10, and 20 the num-
ber of single electron basis states is 1, 5, and 10, respec-
tively. Our lowest-lying eigenvalue corresponds to a
solution dominated by the electron with n ¼ m ¼ 0. The
ordering of excited states, due to significant interaction
mixing, does not always follow the highly degenerate
unperturbed spectrum of Eq. (5). States dominated by
spin-flipped electron-photon components are evident in
the solutions. Nevertheless, the lowest-lying eigenvalues
appear with nearly harmonic separations in Fig. 1 as would
be expected at the coupling of QED. The multiplicity of
the higher eigenstates increases rapidly with increasing
Nmax ¼ K and the states exhibit stronger mixing with
other states than the lowest-lying states. In principle, the
electron-photon basis states interact directly with each
other in leading order through the instantaneous electron-
photon interaction, but numerically the effect of this
interaction is very weak, and thus does not contribute
significantly to the mixing. Even though we work within
a Fock-space approach, our numerical results should
approximate the lowest order perturbative QED results
for sufficiently weak external field.

In Fig. 2 we show the results for the square root of the

electron anomalous magnetic moment (scaled),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��=g2
p

,
as a function of � obtained from the lowest mass eigen-
state. That is, we plot the magnitude of the probability
amplitude that electron has its spin flipped relative to the
single electron Fock-space component in the range where
the results are converged. Since our system is in an external
field, the lowest physical mass eigenstate (not known
experimentally) can deviate from the free electron mass.
Therefore, without renormalization, we only consider
cases where the mass eigenvalue falls within 25% of the
free electron mass. At zero external field we may compare
our �� to the QED one-loop contribution to the electron
anomalous magnetic moment, the Schwinger result �

2� [9].

That is we compare our results with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�=ð2�g2Þp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=8�2
p

. For even Nmax ¼ K the results converge rapidly
for Nmax ¼ K � 14. The results for odd cutoffs (not
shown) track even cutoff results as Nmax ¼ K increases.
Below � & 0:05 MeV all interactions are quenched at
fixed Nmax ¼ K, and not converged, due in part to our
requirement that the HO basis tracks the external field.

Figure 2 also shows an extrapolation of the above results
for Nmax ¼ K ¼ 12; . . . ; 20 to the zero external field limit
� ¼ 0 MeV. We have only included the points above the
peak at � * 0:05 MeV, where we have reasonable

convergence. An excellent agreement with the results is
obtained by a fit function fð�Þ ¼ að1þ b�2 þ c�4Þ�
expð�d�Þ, with a ¼ 0:1121. This is<1% deviation from
the Schwinger result of 0.1125, which is reasonable in light
of our numerical accuracy and extrapolation uncertainties.
If we perform individual extrapolations for all the Nmax ¼
K ¼ 12; . . . ; 20 results with 0:1 � � � 1:4 MeV, a range
spanning the electron mass scale, we obtain excellent fits
with 0:1109 � a � 0:1134, i.e., remaining within 1.5% of
the Schwinger result.
In Ref. [7] we discussed possible divergences present in

our framework, and anticipated a straightforward manage-
ment of the identified divergences. Here we renormalize
our results by applying a sector-dependent normalization
scheme from Ref. [10]. In our present limited Fock space,
we need only the mass counterterm �me. This �me is
added to the mass term in the diagonal one-electron part
of the Hamiltonian Eq. (5). In the absence of a known
experimental mass for renormalization due to the external
field, we adjust �me such that the lowest eigenstate re-
mains at KE0 ¼ m2

e þM0�. That is, we simply adopt the
free electron mass for the renormalized mass, and keep the
coupling constant g2 unchanged. We emphasize that our
choice for the renormalized mass and for the coupling
constant are, in principle, valid for the case of zero external
field only. Measurements for electrons in a trap (see, e.g.,
[11]) could provide results leading to more precise renor-
malization parameters, but this aspect is beyond the scope
of this Letter.

In Fig. 3 we present
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��=g2
p

forNmax ¼ K ¼ 10; . . . ; 20
from the renormalized QED Hamiltonian of Eq. (5), with
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FIG. 2 (color online). Square root of the (scaled) electron
anomalous magnetic moment as a function of the transverse
external field for a sequence of increasing basis spaces (solid
grey lines). These are nonrenormalized results where the mass
eigenvalue falls within 25% of the free electron mass. The
theoretical one-loop QED prediction (‘‘Schwinger’’) result of
0.1125, appropriate to� ¼ 0 MeV, is indicated. The black solid
line is a fit to the results for Nmax ¼ K ¼ 12; . . . ; 20, points
included into the fit are indicated by the markers in the legend.
Extrapolation to zero external field yields 0.1121.
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�me, and Eqs. (6) and (7). To eliminate possible effects from
the peak at�� 0:05 MeV in Fig. 2, we only include results
with the external field� � 0:2 MeV. Again, individual fits
of the form fð�Þ ¼ að1þ b�2 þ c�4Þ expð�d�Þ are an
excellent representation of our results. The range of the
extrapolated values is 0:1077 � a � 0:1216.

The convergence with an increasing cutoff is now less
rapid than in the nonrenormalized case shown in Fig. 2. In
order to approach the continuum limit Nmax ¼ K ! 1, we
perform further extrapolation to the zero-� results of
Fig. 3. The inset of Fig. 3 shows linear extrapolation of
the results of the main figure in 1=K to the continuum limit
Nmax ¼ K ! 1. To verify the stability of the results, an
extrapolation based on the � � 0:1 MeV fits (not shown)
is also given. The extrapolated continuum values are
0.1362 (0.1383) for � � 0:2ð0:1Þ, respectively, and thus
about 20% above the Schwinger result 0.1125. An en-
hancement of this magnitude was also observed in related
works, Refs. [12,13] and Refs. [14,15], where the one-
photon truncated light-front Hamiltonian was regulated
with Pauli-Villars regularization scheme. With Pauli-
Villars regularization as well as in our renormalized re-
sults, interpreted from a perturbation theory perspective,
the intermediate state propagators are developed from a
dynamical (nonperturbative) electron mass rather than us-
ing the unperturbed mass needed for direct comparison
with perturbation theory.

In our approach, the HO parameters�,M0, the electron
massme, and the total longitudinal momentumK appear as
prefactors for the matrix elements in the Hamiltonian.
Therefore, we can rather straightforwardly vary the size
of the Hamiltonian matrix by keeping Nmax fixed, and
changing K alone. We studied the continuum limit of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��=g2
p

by setting Nmax ¼ 20 and increasing K in units
of 10, from K ¼ 10 to K ¼ 50. The dimension of the
Hamiltonian matrix then increases from d ¼ 11 790 to

d ¼ 69 590. The extrapolated results range between
0:1148 � a � 0:1259, and show a good convergence pat-
tern. Linear extrapolation of these results, analogously to
Fig. 3, to the continuum limit K ! 1 are 0.1288 (0.1290)
with� � 0:2ð0:1Þ MeV,�15% above the Schwinger value.
In summary, we have evaluated properties of an electron

in a nonperturbative external harmonic oscillator potential.
We have taken the weak external field limit of the electron
anomalous magnetic moment, and obtained results com-
patible with QED perturbation theory with reasonable
accuracy. Our framework can be extended by incorporating
higher Fock-space sectors and adopting external strong
fields relevant to heavy ion collisions and to future high-
intensity laser facilities. Applications to QCD will proceed
with the adoption of recently developed color-singlet basis
enumeration techniques [7].
The authors thank A. Harindranath, K. Tuchin, J. Hiller,

S. Chabysheva, V. Karmanov, and A. Ilderton for fruitful
discussions. Computational resources were provided
by DOE through the National Energy Research
Supercomputer Center (NERSC). This work was supported
in part by a DOE Grant No. DE-FG02-87ER40371 and
by DOE Contract No. DE-AC02-76SF00515.

*heli@iastate.edu
†pmaris@iastate.edu
‡jvary@iastate.edu
xsjbth@slac.stanford.edu

[1] A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 81,
034911 (2010).

[2] K. Tuchin, arXiv:1008.1604.
[3] M. Ruf, G. R. Mocken, C. Muller, K. Z. Hatsagortsyan,

and C.H. Keitel, Phys. Rev. Lett. 102, 080402 (2009).
[4] C. K. Dumlu and G.V. Dunne, Phys. Rev. Lett. 104,

250402 (2010), and references therein.
[5] S. J. Brodsky, H. C. Pauli, and S. S. Pinsky, Phys. Rep.

301, 299 (1998).
[6] L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233

(1986).
[7] J. P. Vary et al., Phys. Rev. C 81, 035205 (2010).
[8] G. F. de Teramond and S. J. Brodsky, Phys. Rev. Lett. 102,

081601 (2009).
[9] J. S. Schwinger, Phys. Rev. 73, 416 (1948).
[10] V. A. Karmanov, J. F. Mathiot, and A.V. Smirnov, Phys.

Rev. D 77, 085028 (2008).
[11] D. Hanneke, S. F. Hoogerheide, and G. Gabrielse,

arXiv:1009.4831.
[12] S. J. Brodsky, J. R. Hiller, and G. McCartor, Phys. Rev. D

58, 025005 (1998).
[13] S. J. Brodsky, V.A. Franke, J. R. Hiller, G. McCartor, S. A.

Paston, and E.V. Prokhvatilov, Nucl. Phys. B703, 333
(2004).

[14] S. S. Chabysheva and J. R. Hiller, Ann. Phys. (Leipzig)
325, 2435 (2010).

[15] S. S. Chabysheva and J. R. Hiller, Phys. Rev. D 81, 074030
(2010).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(MeV)

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

(
/g

2 )1/
2

Nmax=K:
10
12
14

16
18
20

0 0.02 0.04 0.06 0.08 0.1

1/K

0.1

0.11

0.12

0.13
0.1 MeV
0.2 MeV

FIG. 3 (color online). Individual fits (solid black lines) to the
renormalized results for square root of the (scaled) electron
anomalous magnetic moment for Nmax ¼ K ¼ 10; . . . ; 20. The
inset shows the continuum limit extrapolation of the zero exter-
nal field results in the main panel as a function of 1=K.
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