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We present a string theory construction of a gravity dual of a spatially modulated phase. Our earlier

work shows that the Chern-Simons term in the five-dimensional Maxwell theory destabilizes the Reissner-

Nordström black holes in anti–de Sitter space if the Chern-Simons coupling is sufficiently high. In this

Letter, we show that a similar instability is realized on the world volume of 8-branes in the Sakai-

Sugimoto model in the quark-gluon plasma phase. Our result suggests a new spatially modulated phase in

quark-gluon plasma when the baryon density is above 0:8Nf fm�3 at temperature 150 MeV.
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Introduction.—Five-dimensional Maxwell theory with a
Chern-Simons term is tachyonic in the presence of a con-
stant electric field [1]. The tachyonic modes with nonzero
spatial momenta destabilize the Reissner-Nordström black
holes in five-dimensional anti–de Sitter space (AdS5) if
the Chern-Simons coupling is larger than a certain critical
value. If its holographically dual quantum field theory
exists, the instability would imply a spatially modulated
phase transition in the theory. It would be interesting to
construct a model exhibiting such an instability ab initio
from superstring theory so that we can be certain that the
dual theory exists and know what it is. This has not been
demonstrated so far. For example, it was shown in [1] that
the three-charge extremal black hole in the type IIB super-
string theory on AdS5 � S5 is barely stable.

In this Letter, we show that such an instability is realized
in the quark-gluon plasma phase of the Sakai-Sugimoto
model for QCD with Nf flavors of massless quarks [2]. On

the world volume of the 8-branes, there is a UðNfÞ gauge
field, and its diagonalUð1Þ part is dual to the quark number
(¼ Nc times the baryon number). The baryons are identi-
fied with instanton solutions on the world volume in this
model [3]. World volume solutions representing QCD
states with finite baryon density and temperature have
been studied [2,4–8].

Most of the solutions with finite baryon density are
singular at the sources of baryons charges, and it is not
clear whether the supergravity approximation is appli-
cable. One of the exceptional cases is the quark-gluon
plasma phase, where there is a smooth solution represent-
ing a finite baryon density configuration.

In the Sakai-Sugimoto model, the gluon degrees of free-
dom are realized on Nc D4-branes compactified on a circle
S1c with supersymmetry breaking boundary condition [9].
At finite temperature, we compactify the Euclidean time on
another circle S1T , and the D4-brane world volume has the
topology of S1c � S1T � R3. In the confinement phase, S1c is

contractible in the bulk, and the topology of the bulk
geometry is then S1T � R3 � S4 times a disk bounded by
S1c. Each 8-brane wraps the thermal S1T � S4 and is ex-
tended in R3. In this phase, the 8-brane starts as a D8-brane
at a point on S1c, meanders in the bulk, and ends as a

D8-brane at another point on S1c.
In the deconfinement phase, the thermal S1T becomes

contractible in the bulk geometry [9]. Depending on the
relative locations of the 8-branes, the chiral symmetry
restoration takes place at or above the deconfinement
temperature [2,4,5]. Above the chiral symmetry restoration

temperature, D8 and D8-branes become separated, and
each of them has the topology of a disk bounded by S1T
times S4. This describes a holographic dual of the quark-
gluon plasma. In this phase, it is possible to construct a
solution with finite baryon density that is smooth every-
where on the world volume, as we will discuss below. In
this Letter, we will focus on this case.
The dynamics of the 8-brane world volume is described

by the Dirac-Born-Infeld (DBI) action with the Chern-
Simons term. We show that there is a critical baryon
density above which the brane configuration becomes un-
stable by tachyonic modes carrying nonzero momenta.
This suggests a spatially modulated phase with a baryon
density wave.
A holographic dual of a baryon density wave was dis-

cussed in the ‘‘bottom-up’’ model in [10]. The instability of
the Sakai-Sugimoto model has been studied earlier, for
example, in [11], but not in the chiral symmetric phase.
To our knowledge, it has not been shown whether the
Chern-Simons coupling on the world volume theory on
the 8-branes is large enough to trigger the spatially modu-
lated phase transition. In this Letter, we give the first
demonstration of a spatially modulated phase transition
in a ‘‘top-down’’ model with a well-understood dual pair.
Instability of homogeneous solution.—The bulk geome-

try above the deconfining temperature is the near horizon
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geometry of the Nc D4-branes at finite temperature com-
pactified on the supersymmetry breaking circle S1c [9]. In
the notation of [12], the metric is

ds2 ¼
�
U

R

�
3=2ð�fðUÞdX2

0 þ d ~X2 þ dX2
4Þ

þ
�
R

U

�
3=2

�
dU2

fðUÞ þU2d�2
4

�
; (1)

where UT ¼ ð4�3 RTÞ2R is the location of the horizon at

temperature T, fðUÞ ¼ 1�U3
T=U

3, R3 ¼ �gsNcl
3
s , and

d�2
4 is a metric for a unit four-sphere. The coordinate

U and the four-sphere represent the transverse directions
to the D4-branes. The temperature T sets the periodicity of
the imaginary time (ImX0) direction, while the period
of the compact X4 direction is arbitrary. In the chiral
symmetry restoration phase, each 8-brane is located at a
constant X4 [2,4,5].

The D8 and D8-branes are separated in the chiral
symmetric phase. Let us focus on the dynamics on the
D8-branes. The DBI action on the D8-brane is given by

S¼�TD8

Z
d9�e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detðg��þ2��0F��Þ

q
þSCS; (2)

where TD8 ¼ ð2�Þ�8l�9
s and the dilaton is given by

e� ¼ gsðU=RÞ3=4. The Chern-Simons action is

SCS ¼ 1

48�3

Z
D8

F4 ^!5ðAÞ; (3)

where F4 ¼ dC3 is the RR 4-form field which satisfies
1
2�

R
S4 F4 ¼ Nc and !5ðAÞ is the Chern-Simons 5-form.

For our purpose, it is sufficient to turn on theUð1Þ part of
the gauge field on the world volume. To the quadratic
order, the Uð1Þ part does not couple to the SUðNfÞ part
of the gauge field or fluctuations of the 8-brane in the
transverse direction. Couplings to the bulk degrees of free-
dom are suppressed by 1=Nc. To simplify our equations,

we rescale the gauge field and the metric as A ¼ R2

2��0 ~A and

g�� ¼ R2~g��. We also rescale the coordinates as U ¼ Ru,

X0 ¼ Rt, ~X ¼ R~x, andX4 ¼ R�. Following [2], we assume
that the gauge field is constant on the S4 and obtain the
effective five-dimensional action,

S=c ¼ �
Z
M4�R

dtd3xduu1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detð~g�� þ ~F��Þ

q

þ �
Z
M4�R

dtd3xdu��1�2�3�4�5 ~A�1
~F�2�3

~F�4�5
;

(4)

with the five-dimensional metric,

ds2 ¼ u3=2ð� fðuÞdt2 þ d~x2 þ d�2Þþ 1

u3=2fðuÞdu
2;

fðuÞ ¼ 1� u3T
u3

; uT ¼
�
4�

3
RT

�
2
: (5)

The Chern-Simons term induces anomaly in the vector
current on the boundary. In general, one needs to add the
Bardeen counterterm to restore the current conservation.
With only the vector electric field turned on, the counter-
term vanishes. In particular, the definition of the chemical
potential below is not modified by this. The Chern-Simons
coupling � is fixed to be 3=4 and the factor c is

c ¼ 8�2

3
TD8Nfg

�1
s R9: (6)

Note that, modulo the overall factor c, the action (4)
depends only on uT .
If the kinetic term for the gauge field were of the

Maxwell form ~F2, the electric field strength could be
made arbitrarily high by raising the baryon density, and
any nonzero value of the Chern-Simons coupling would
induce an instability of the type discovered in [1]. With
the DBI action, there is an upper bound for the field
strength, and it requires a more careful analysis to deter-
mine whether the instability takes place.
Let us consider a background configuration with non-

zero ~A0 ¼ ~A0ðuÞ. The equation of motion gives

~EðuÞ ¼ ~	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~	2 þ u5

q ; (7)

where ~E ¼ � ~Ftu ¼ @u ~A0. The integration constant ~	 will
be identified as a rescaled value of the quark density
	 (¼ Nc times the baryon density). As advertised in the
introduction, this finite quark density solution is regular
everywhere on the brane. We choose the gauge so that
~A0ðuÞ vanishes on the horizon. Note that, although the
action includes the Chern-Simons term, the equations of
motion are gauge invariant. The chemical potential ~� is

given by the asymptotic value of ~A0 at u ! 1.

~� ¼ ~A0ðu ¼ 1Þ ¼
Z 1

uT

du
~	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~	2 þ u5
q : (8)

Let us perturb this configuration as ~F ! ~Fþ 
 ~F.
To find an onset of the instability, we look for a static
normalizable solution in the linearized equation for 
 ~F,

@u

�
u5=2fðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~EðuÞ2

p 
 ~Fui

�
� u�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~EðuÞ2

q
@j
 ~Fij

� 2��ijk ~EðuÞ
 ~Fjk ¼ 0:

(9)

If we apply the operator �ijk@j and use the Fourier mode


 ~Fij ¼ �ijkvke
�iklx

l
�ðuÞ with an eigenvalue ik ¼ ij ~kj (the

eigenvalue�ik gives the same result),�ðuÞ obeys a second
order ordinary differential equation,2
4� d

du
fðuÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~	2 þ u5

q d

du
þ�4�~	kþ u2k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~	2 þ u5
q

3
5�ðuÞ ¼ 0:

(10)
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At the horizon u ¼ uT , we use the ingoing boundary
condition for static waves.

We solved the linearized Eq. (10) numerically for gen-
eral values of the Chern-Simons coupling �. For each
value of the Chern-Simons coupling �> 1=4, we found
a critical value of ~	 above which the instability takes place.
Figure 1 depicts the critical quark density ~	crit as a function
of �. We note that ~	crit diverges as � ! 1=4.

We can also show analytically that � ¼ 1=4 is the
limiting value of the Chern-Simons coupling. Let us re-

scale variables as �u ¼ ~	�ð2=5Þu, �k ¼ ~	�ð1=5Þk, and take the
limit ~	 ! 1 in Eq. (10). We find

2
4� d

d �u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �u5

p d

d �u
þ�4� �kþ �u2 �k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �u5
p

3
5 ~�ð �uÞ ¼ 0: (11)

We have verified that a solution to this equation approaches
the solution to (10) in the sense of the L2 measure. From
the numerical evaluation of (11), we find that the momen-
tum �k with nontrivial normalizable solutions tends to in-
finity as we take ~	 ! 1 and � approaches the limiting
value. Anticipating this, we take �k ! 1 in (11) while

keeping v ¼
ffiffiffi
�k

p
�u and obtain,

�
� d2

dv2
� 4�þ v2

�
~�ð �uÞ ¼ 0: (12)

This can be solved by the harmonic oscillator ground state
~�ðvÞ ¼ e�v2=2 with � ¼ 1=4.
In the quark-gluon plasma phase, the Chern-Simons

coupling on the world volume theory is � ¼ 3=4 and is
above the limiting value of 1=4. At this value of �, the
critical quark density is numerically evaluated as

~	 crit ¼ 3:714u5=2T : (13)

Let us express the critical quark density in the original
set of variables. The quark density 	 is defined by a
variation of the Lagrangian density by E ¼ @uA0. Note
we rescaled the action by the factor c in (6) and the gauge

field is rescaled as A ¼ R2

2��0 ~A. We should also remember

that we rescaled our spacetime coordinates by R. The
physical quark density 	 is then related to ~	 above as

	 ¼ c

�
R2

2��0

��1 ~	

R3
¼ 2

3ð2�Þ5
Nf

gs

R4

l7s
~	: (14)

Substituting (13) into this, the critical quark density
at � ¼ 3=4 is given as

	crit ¼ c0NfNcðgsNclsÞ2T5; (15)

where c0 ¼ 3:714ð2=3Þ6�3 � 10.
It is important to make sure that we can ignore back-

reaction of the quark density to the bulk geometry. Note
that the critical baryon density is given by dividing the
quark density 	crit by Nc and that the result is proportional
to NfðgsNcÞ2T5. The Nc dependence comes only in the

combination of the ’t Hooft coupling gsNc, which is kept
finite in the large Nc limit. Since the baryons can be
thought of as D4-branes wrapping S4 [13,14], their back-
reaction becomes significant only when their density scales
as Nc or more and is negligible in the large Nc limit
provided Nf � Nc. Another way to see this is to evaluate

the energy density due to the electric field using the action
(4) and show that it is proportional to Nf=gs times some

power of gsNc. This is the same scaling behavior as
the tension of the Nf 8-branes, which does not generate

backreaction.
It is an interesting exercise to express the critical density

in terms of QCD quantities. The string parameters gs and ls
are related to the Yang-Mills coupling gYM and the Kaluza-
Klein scale MKK for the compactification circle S1c as
g2YM ¼ 4�2gsls=L and MKK ¼ 2�=L, where L is the cir-
cumference of S1c [12]. The critical baryon density can then
be written as

	crit

Nc
¼ c0Nf

4�2

�2

M2
KK

T5; (16)

where � ¼ g2YMNc. The constants MKK and � can be
determined by fitting, for example, with the pion decay
constant and the mass of the 	meson, asMKK ¼ 949 MeV
and � ¼ g2YMNc ¼ 16:6 [2]. The deconfinement tempera-
ture, where the thermal cycle S1T becomes contractible, is at
MKK=2� ¼ 151 MeV. Interestingly, this turns out to be
close to the critical temperature expected for the quark-
gluon plasma [15]. If we substitute T ¼ 150 MeV in (16),
for example, the critical baryon density comes out as

	crit

Nc
� 0:8Nf fm�3: (17)

For Nf ¼ 2, this is about 10 times the nucleon density in

atomic nuclei.
At the critical density 	 ¼ 	crit, the instability begins

to occur at the momentum k ¼ 2:39u1=2T , which in the
original coordinates is given by k=R � 10T. If we set
T ¼ 150 MeV, the momentum is about 1.5 GeV, and the
corresponding wavelengh is 0:8 fm.

FIG. 1 (color online). The critical quark density ~	 as a func-
tion of the Chern-Simons coupling �. The instability takes place
in the shaded region with �> �crit ¼ 1=4. The value � ¼ 3=4
for the Sakai-Sugimoto model is indicated by the red vertical
line.
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Nonlinear solution.—We can construct a solution to the
full nonlinear equations carrying a fixed nonzero momen-
tum whose energy is lower than that of the original trans-
lationally invariant state. Following [16], we make the
ansatz,

~A t ¼ aðuÞ; ~Ax þ i ~Ay ¼ hðuÞe�ikz; (18)

with all other components vanishing. Although there may
be a nonlinear solution with even lower energy, it is inter-
esting that one can construct a candidate ground state with
such a simple ansatz.

With this ansatz, the equations of motion become

@u

�
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u3 þ k2hðuÞ2p

a0ðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a0ðuÞ2 þ fðuÞh0ðuÞ2p

�
þ 4�khðuÞh0ðuÞ ¼ 0

@u

�
ufðuÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u3 þ k2hðuÞ2p
h0ðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a0ðuÞ2 þ fðuÞh0ðuÞ2p
�
þ 4�ka0ðuÞhðuÞ

� k2uhðuÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a0ðuÞ2 þ fðuÞh0ðuÞ2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u3 þ k2hðuÞ2p ¼ 0: (19)

We assume that the embedding coordinate � is constant,
which is consistent with the equations of motion. The first
equation can be integrated easily, and gives us the quark
density,

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u3 þ k2hðuÞ2p

a0ðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a0ðuÞ2 þ fðuÞh0ðuÞ2p þ 2�khðuÞ2 ¼ ~	: (20)

Using this expression, the second equation becomes

KðuÞ@uðKðuÞfðuÞh0ðuÞÞ� k2u2hðuÞ
þ 4k�hðuÞð~	� 2k�hðuÞ2Þ ¼ 0; (21)

where

KðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~	2 þ u5 þ khðuÞ2ðku2 � 4~	�þ 4k�2hðuÞ2Þ

1þ fðuÞh0ðuÞ2
s

:

(22)

Equation (21) can be solved numerically. Since we have
a family of solutions parametrized by the momentum k,
we can look for the one which minimizes the free energy
density F , given by

F ð	Þ ¼ �	þ
Z

duLE; (23)

where LE is the DBI Lagrangian plus the Chern-Simons
term. Note that the free energyF is a function of 	, and not
�. We have identified the momentum with the lowest value
of the free energy, and the expectation value of the current
operator h~Ji dual to hðuÞ can be read off from the asymp-
totic behavior of the normalizable solutions.

So far, we have focused on the dynamics on the D8

brane world volume. The analysis on the D8-branes is
identical except that the Chern-Simons coupling has the

opposite sign due to the CPT invariance. There are sepa-

rate gauge fields AL and AR on the D8 and D8-branes,
respectively, and they cause the instability above the
critical charge density. The baryon vector current is dual
to (AL þ AR) and the axial-vector current is dual to
(AL � AR). The baryon charge density turns on the same
amount of chemical potentials for both AL and AR. Above
the critical baryon density, the instability will take place on
both branes, and both vector and axial baryon currents are
generated on the boundary. In fact, directions of the mo-

menta on the D8 and D8-branes can be different, and the
currents JL and JR dual to AL and AR can carry momenta in
different directions.
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