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We analyze, in the paradigm of open quantum systems, the reduced dynamics of a freely falling two-

level detector in de Sitter space-time in weak interaction with a reservoir of fluctuating quantized

conformal scalar fields in the de Sitter-invariant vacuum. We find that the detector is asymptotically

driven to a thermal state at the Gibbons-Hawking temperature, regardless of its initial state. Our

discussion, therefore, shows that the Gibbons-Hawking effect of de Sitter space-time can be understood

as a manifestation of thermalization phenomena that involves decoherence and dissipation in open

quantum systems.
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The theory of quantum open systems has, in recent
years, greatly advanced our understanding of fundamental
issues at the foundation of quantum mechanics and non-
equilibrium statistical physics, and it has been fruitfully
applied to the nascent yet fast-growing fields of quantum
information science, modern quantum optics, atomic and
many-body systems, soft condensed matter physics, and
biophysics. In this Letter, we will apply the open quantum
system approach to the investigation of the Gibbons-
Hawking effect [1] in the hope of gaining insights into
de Sitter space-time from the prospective of quantum open
systems. Our interest in this issue also lies in the fact that
the AdS=CFT correspondence between quantum gravity
on an anti–de Sitter (AdS) space-time and a conformal
quantum field theory without gravity on a boundary has
provided new and rewarding lines of research into many
branches of physics, such as condensed matter physics (see
Ref. [2] for a recent review) and quantum chromodynamics
(see Ref. [3] for a recent review), and there may also exist a
holographic duality between quantum gravity on de Sitter
space-time and a conformal field theory living on the
boundary identified with the timelike infinity of de Sitter
space-time [4].

Our plan is to examine the time evolution of a freely
falling two-level detector in interaction with fluctuating
vacuum conformal scalar fields in de Sitter space-time.
The detector is treated as an open quantum system and
the vacuum with fluctuations of the quantum fields as the
environment. The evolution of the detector is subject to the
effects of decoherence and dissipation due to its interaction
with the environment, and as for any open system, the full
dynamics of the detector can be obtained from the com-
plete time evolution describing the total system (detector
plus the environment) by integrating over the field degrees
of freedom, which are in fact not observed. We will show
that the detector in de Sitter space-time, regardless of its
initial state, is asymptotically driven to a thermal state at

the Gibbons-Hawking temperature. The open quantum
system approach in our Letter therefore demonstrates that
the Gibbons-Hawking effect can be understood as a mani-
festation of thermalization phenomena in the framework of
open quantum systems. It is worth noting here that an
examination of similar issues, i.e., the Unruh effect and
the Hawking radiation, in the paradigm of open quantum
systems has been carried out, respectively, in Ref. [5,6].
When vacuum fluctuations are concerned in a curved

space-time, one first has to specify the vacuum states. The
vacuum states in de Sitter space-time can be classified into
two categories: one is the de Sitter-invariant states, the
others are those which break de Sitter invariance [7].
Generally, the de Sitter-invariant vacuum, whose status in
de Sitter space-time is just like Minkowski vacuum in the
flat space-time, is deemed to be a natural vacuum. So we
will consider the evolution in the proper time of a freely
falling detector in interaction with a quantized conformally
coupled massless scalar field in the de Sitter-invariant
vacuum.
We assume the combined system (detectorþ external

fluctuating vacuum fields) to be initially prepared in a
factorized state, with the detector having two internal
energy levels and the fields in the de Sitter vacuum. Thus
the detector can be fully described in terms of a two-
dimensional Hilbert space, so that its states can be repre-
sented by a 2� 2 density matrix �, which is Hermitian
�þ ¼ �, and normalized Trð�Þ ¼ 1 with detð�Þ � 0.
Without loss of generality, we take the total Hamiltonian
for the complete system to have the form

H ¼ Hs þH� þ �H0: (1)

Here Hs is the Hamiltonian of the detector, which is taken,
for simplicity, to be

Hs ¼ !0

2
�3; (2)

PRL 106, 061101 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

11 FEBRUARY 2011

0031-9007=11=106(6)=061101(4) 061101-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.061101


where �3 is the Pauli matrix and !0 the energy level
spacing. H� is the standard Hamiltonian of conformal

scalar fields in de Sitter space-time, details of which need
not be specified here, andH0 is the interaction Hamiltonian
of the detector with the external scalar fields and is as-
sumed to be given by

H0 ¼ �3�ðxÞ: (3)

Let us note here that we can also write Hs and H0 in more
general forms [5], but that does not change the result of this
Letter. In order to achieve a rigorous, mathematically
sound derivation of the reduced dynamics of the detector,
we will assume that the interaction between the detector
and the scalar fields is weak so that the finite-time evolu-
tion describing the dynamics of the detector takes the form
of a one-parameter semigroup of completely positive maps
[8,9]. It should be pointed out that the coupling constant �
in (1) should be small, and this is required by our assump-
tion that the interaction of the atom with the scalar fields
is weak.

Initially, the complete system is described by the total
density matrix �tot ¼ �ð0Þ � j0ih0j, where �ð0Þ is the ini-
tial reduced density matrix of the detector and j0i is the
de Sitter-invariant vacuum state for field�ðxÞ. In the frame
of the detector, the evolution in the proper time � of the
total density matrix �tot of the complete system satisfies

@�totð�Þ
@�

¼ �iLH½�totð�Þ�; (4)

where the symbol LH represents the Liouville operator
associated with H,

LH½S� � ½H; S�: (5)

The dynamics of the detector can be obtained by tracing
over the field degrees of freedom, i.e., by applying the trace
projection to the total density matrix �ð�Þ ¼ Tr�½�totð�Þ�.

In the limit of weak coupling which we assume in this
Letter, the reduced density is found to obey an equation in
the Kossakowski-Lindblad form [10,11]

@�ð�Þ
@�

¼ �i½Heff ; �ð�Þ� þL½�ð�Þ�; (6)

where

L ½�� ¼ 1

2

X3

i;j¼1

aij½2�j��i � �i�j�� ��i�j�: (7)

The matrix aij and the effective Hamiltonian Heff are

determined by the Fourier transform Gð�Þ and Hilbert
transform Kð�Þ of the field vacuum correlation functions
(Wightman functions)

Gþðx� yÞ ¼ h0j�ðxÞ�ðyÞj0i; (8)

which are defined as

G ð�Þ ¼
Z 1

�1
d�ei��Gþðxð�ÞÞ; (9)

K ð�Þ ¼ P

�i

Z 1

�1
d!

Gð!Þ
!� �

: (10)

Then the coefficients of the Kossakowski matrix aij can be

written explicitly as

aij ¼ A�ij � iB�ijk�k3 þ C�i3�j3; (11)

with

A ¼ 1

2
½Gð!0Þ þ Gð�!0Þ�;

B ¼ 1

2
½Gð!0Þ �Gð�!0Þ�; C ¼ Gð0Þ � A:

(12)

The effective Hamiltonian Heff contains a correction term,
the so-called Lamb shift, and one can show that it can be
obtained by replacing!0 inHs with a renormalized energy
level spacing � as follows,

Heff ¼ �

2
�3 ¼ f!0 þ i½Kð�!0Þ �Kð!0Þ�g�3; (13)

where a suitable subtraction is assumed in the definition of
Kð�!0Þ �Kð!0Þ to remove the logarithmic divergence
which would otherwise be present.
In order to find out how the reduced density evolves with

proper time from Eq. (6), we need the Wightman function
for the conformally coupled scalar fields in the de Sitter-
invariant vacuum. Let us note that there are several differ-
ent coordinate systems that can be chosen to parametrize
de Sitter space-time [12]. Here we choose to work with the
global coordinate system ðt; 	; 
;�Þ in which the freely
falling detector is comoving with the expansion. The line
element is

ds2 ¼ dt2 � �2cosh2ðt=�Þ½d	2

þ sin	2ðd
2 þ sin2
d’2Þ�; (14)

with � ¼ 31=2��1=2, where � is the cosmological con-
stant. The parameter t is often called the world or cosmic
time. The canonical quantization of a massive scalar field
with this metric has been done in Refs. [7,12–20]. In
coordinates (14), the wave equation for a massive scalar
field becomes

�
1

cosh3t=�

@

@t

�
cosh3

t

�

@

@t

�
� �

�2cosh2t=�

þm2 þ �R

�
� ¼ 0; (15)

where the Laplacian
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� ¼ 1

sin2	

�
@

@	

�
sin2	

@

@	

�
þ 1

sin


@

@


�
sin


@

@


�

þ 1

sin2


@2

@’2

�
: (16)

From (15) one can get the eigenmodes, and define a
de Sitter-invariant vacuum. Then the Wightman function
can be written as [18]

Gþðxð�Þ; xð�0ÞÞ¼� 1

16��2

1
4�2

cos�

�F

�
3

2
þ;

3

2
�;2;

1�Zðx;x0Þ
2

�
; (17)

where F is a hypergeometric function and

Zðx; x0Þ ¼ sinh
t

�
sinh

t0

�
� cosh

t

�
cosh

t0

�
cos�;

cos� ¼ cos	 cos	0 þ sin	 sin	0½cos
 cos
0
þ sin
 sin
0 cosð’� ’0Þ�0;

 ¼
�
9

4
� 12

R
ðm2 þ �RÞ

�
1=2

: (18)

In the massless, conformal coupling limit, for a freely
falling detector, the Wightman function becomes

Gþðxð�Þ; xð�0ÞÞ ¼ � 1

16�2�2sinh2½ð�� �0Þ=2�� i"� :
(19)

Its Fourier transform can be found to be

G dsð�Þ ¼ �

2�

e2���

e2����1
: (20)

This leads to

A ¼ 1=2½Gdsð�Þ þ Gdsð��Þ� ¼ � cothð���Þ
4�

;

B ¼ 1=2½Gdsð�Þ � Gdsð��Þ� ¼ �

4�
:

(21)

In order to solve Eq. (6) to find out how the reduced
density evolves with proper time, let us express it in terms
of the Pauli matrices,

�ð�Þ ¼ 1

2

�
1þX3

i¼1

�ið�Þ�i

�
: (22)

Substituting Eq. (22) into Eq. (6), one can show that the
Bloch vector j�ð�Þi of components f�1ð�Þ; �2ð�Þ; �3ð�Þg
obeys

@

@�
j�ð�Þi ¼ �2H j�ð�Þi þ j�i; (23)

where j�i denotes a constant vector f0; 0;�4Bg. The exact
form of the matrix H reads

H ¼
2Aþ C �=2 0
��=2 2Aþ C 0

0 0 2A

0
@

1
A: (24)

This matrix is nonsingular and its three eigenvalues are
�1 ¼ 2A, �� ¼ ð2Aþ CÞ � i�=2. Since the real parts of
these eigenvalues are positive, at later times, j�ð�Þi will
reach an equilibrium state j�ð1Þi [21], which can be found
by formally solving Eq. (23)

j�ð�Þi ¼ e�2H �j�ð0Þi þ ð1� e�2H �Þj�1i; (25)

with

j�1i ¼ 1

2
H�1j�i ¼ �B

A

0
0
1

0
@

1
A: (26)

If we let � ¼ 1=T ¼ 2 arctanhðB=AÞ=!0, we can easily
show that Eq. (26) can be rewritten in a purely thermal
form

�1 ¼ e��Hs

Tr½e��Hs� : (27)

Making use of Eq. (21), we find the temperature of the
thermal state is

T ¼ !

2 arctanhðB=AÞ ¼
1

2��
: (28)

This is exactly the Gibbons-Hawking temperature. Thus,
regardless of its initial state, a freely falling two-level
detector in de Sitter space-time is asymptotically driven
to a thermal state at the Gibbons-Hawking temperature.
Therefore, there must exist a bath of thermal radiation in
de Sitter space-time. Our open system approach thus re-
veals that the existence of the Gibbons-Hawking effect is
simply a manifestation of thermalization phenomena in
the framework of open system dynamics. At this point, it
is worth noting that the Gibbons-Hawking temperature of
de Sitter space-time has also be derived in other different
contexts such as the global embedding approach [22,23]
and the universal Rindler scheme [24].
Further aspects of the Gibbons-Hawking effect in terms

of the thermalization phenomena can be studied by exam-
ining the behavior of the finite-time solution (25). For this
purpose, let us note that

e�2H � ¼ 4

�2þ 4C2

8<
:e

�4A��1þ 2e�2ð2AþCÞ�
2
4�2 cosð��Þ

þ�3

sinð��Þ
�

3
5
9=
;; (29)

where
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�1 ¼
�
ð2Aþ CÞ2 þ�2

4

�
I� 2ð2Aþ CÞH þH 2;

�2 ¼ �2AðAþ CÞI þ ð2Aþ CÞH � 1

2
H 2;

�3 ¼ 2A

�
�2

4
� Cð2Aþ CÞ

�
I þ

�
Cð4Aþ CÞ ��2

4

�
H

� CH 2: (30)

Equation (29) reveals that a freely falling detector in
de Sitter space-time is subjected to the effects of decoher-
ence and dissipation characterized by the exponentially
decaying factors involving the real parts of the eigenvalues
of H and oscillating terms associated with the imaginary
part. Therefore, the Gibbons-Hawking effect as a manifes-
tation of thermalization phenomena in the framework of
open quantum systems actually involves phenomena of
decoherence and dissipation. This suggests that the vac-
uum in de Sitter space-time behaves like a fluctuating as
well as a dissipative medium [25,26]. In this regard, our
approach to the derivation of the Gibbons-Hawking effect
seems to shed new light on the issue as compared to other
traditional treatments, and it ties its existence to the effects
of decoherence and dissipation in open quantum systems.

In summary, we have analyzed, using the well-known
techniques in the study of open quantum systems, the time
evolution of a freely falling detector in de Sitter space-time
in weak interaction with fluctuating vacuum conformal
scalar fields in the de Sitter-invariant vacuum. The detector
has been shown to be asymptotically driven to a thermal
state at the Gibbons-Hawking temperature, regardless of its
initial state. Our open system approach to the issue there-
fore shows that the Gibbons-Hawking effect of de Sitter
space-time can be understood as a manifestation of ther-
malization phenomena in the framework of open quantum
systems, which actually involves the effects of decoher-
ence and dissipation. It is worthwhile to note that the
general techniques developed in the theory of open quan-
tum systems may also be applicable to studying other
phenomena in curved space-times, such as particle crea-
tion, and may thus provide new insights in the physical
understanding of these phenomena.
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