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Quantum systems such as, for example, photons, atoms, or Bose-Einstein condensates, prepared in

complex states where entanglement between distinct degrees of freedom is present, may display several

intriguing features. In this Letter we introduce the concept of such complex quantum states for intense beams

of light by exploiting the properties of cylindrically polarized modes. We show that already in a classical

picture the spatial and polarization field variables of these modes cannot be factorized. Theoretically it is

proven that by quadrature squeezing cylindrically polarizedmodes one generates entanglement between these

two different degrees of freedom. Experimentally we demonstrate amplitude squeezing of an azimuthally

polarized mode by exploiting the nonlinear Kerr effect in a specially tailored photonic crystal fiber. These

results display that such novel continuous-variable entangled systems can, in principle, be realized.
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Entanglement is one of the most fascinating features
arising from quantum mechanics and is of great impor-
tance for applications in quantum optics such as quantum
information processing, quantum lithography, and quan-
tum imaging [1–5]. Most of the currently investigated
systems contain entanglement in the same degree of free-
dom (d.o.f.), among other things, in the quadrature [6],
polarization [7,8], or spatial field variables [4,9]. Recent
developments in the single-photon regime have introduced
so-called hybrid entanglement [10–14], which can expand
the application spectrum of entangled states. The term
‘‘hybrid entanglement’’ denotes the peculiar property of
quantum states to manifest nonclassical correlations be-
tween different d.o.f. of the system itself [12]. These differ-
ent d.o.f. may belong either to different parties of the same
quantum system, e.g., the matter part and radiation part of
an atom-light interacting system [15,16], or to a single-
party system, e.g., the polarization and time-bin d.o.f. of a
single photon [12]. One common method in discrete space
to generate hybrid-entangled states is by exciting an addi-
tional d.o.f. in one arm of a single, e.g., polarization,
entangled state. We, on the other hand, concentrate on
another more direct method by generating the hybrid en-
tanglement in the nonlinear process.

In this Letter we exploit the properties of cylindrically
polarized modes to investigate hybrid entanglement in
continuous-variable systems, the noise properties of which
are described by the electric field variables. The intriguing
feature of these cylindrically polarized modes is that their
spatial and polarization field variables cannot be separated
even in a classical description. We theoretically show that
this property leads to entanglement between the spatial and
polarization d.o.f. when one of these modes is quadrature

squeezed. Such hybrid-entangled systems represent a new
class of yet unexplored continuous-variable entangled
states. The cylindrically polarized modes utilized in our
investigation already have a wide range of important ap-
plications ranging from the generation of sharper focused
light beams for the usage in lithography or nonconfocal
microscopy [17] to unity-efficient coupling to a single
atom [18].
New concepts, such as continuous-variable hybrid en-

tanglement, are likely to be of similar advantage for a wide
range of applications in quantum optics as they already
have proven to be in the discrete variables [19,20].
Furthermore, we would like to note that continuous-
variable hybrid entanglement in principle can be applied
to other physical systems, such as position and momentum
of particles or phonon interactions in solid state physics
as well.
A classical light field is commonly described by its

spatial mode function as well as its polarization vector.
In most cases, such a description can be carried out in a
single mode picture by constructing a proper mode basis in
which only one spatial mode and one polarization mode are
occupied. However, as will be shown, such a basis trans-
formation is not possible for cylindrically polarized modes.
They display nontrivial structural properties which, when
investigated in a quantum-mechanical picture, can yield
continuous-variable hybrid entanglement. To illustrate
this, consider, for example, the classical description of a
radially polarized beam of light which can be written as

u Rðx; y; zÞ ¼ ðx̂c 01 þ ŷc 10Þ=
ffiffiffi
2

p
; (1)

where the functions c nm, n;m 2 f0; 1g, are the first-order
Hermite-Gauss paraxial solutions of the scalar wave

PRL 106, 060502 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

11 FEBRUARY 2011

0031-9007=11=106(6)=060502(4) 060502-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.060502


equation and x̂ and ŷ are unit vectors denoting linear
polarization along the x and y axes, respectively. If we
redefine fx̂; ŷg � fê1; ê2g and fc 10; c 01g � fv1; v2g, one
can rewrite Eq. (1) as uRðx; y; zÞ ¼ P

2
n¼1

ffiffiffiffiffiffi
�n

p
ênvn with

�1; �2 ¼ 1=2. Although uRðx; y; zÞ represents a perfectly
classical object, it has the same tensor-product form of the
quantum state of a two-dimensional bipartite maximally
entangled system with Schmidt rank [21] K ¼
1=

P
2
n¼1 �

2
n ¼ 2. Therefore, uRðx; y; zÞ is not separable

into the product of a spatially uniform polarization vector
û and a singular function fðx; y; zÞ: uRðx; y; zÞ �
û � fðx; y; zÞ; i.e., the polarization and spatial d.o.f. are
not separable. We will refer to this intriguing classical
feature as structural inseparability. Similar nonseparable
modes have been used to violate Bell-like spin-orbit in-
equalities in discrete variables [22].

A closer inspection of Eq. (1) also reveals that, still in
analogy with a maximally entangled quantum singlet state,
it is shape invariant with respect to simultaneous polariza-

tion and spatial basis change. For example, with ê� ¼
ðx̂� iŷÞ= ffiffiffi

2
p

and �� ¼ ðc 10 � ic 01Þ=
ffiffiffi
2

p
denoting the

circular and orbital-angular-momentum polarization and
spatial bases respectively, Eq. (1) can be rewritten as

u Rðx; y; zÞ ¼ ðêþ�� þ ê��þÞ=
ffiffiffi
2

p
: (2)

In order to show that quantum hybrid-entangled states
can be generated by quadrature squeezing a cylindrically
polarized optical mode, one needs to change from a clas-
sical to a quantum-mechanical description of the state. To
do this, let us consider the special case of a bright squeezed
azimuthally polarized mode, the state that was used in the
experiment. However, it should be noted that the unique
features contained in this state can also be observed for
other cylindrically polarized optical modes and are, fur-
thermore, not limited to bright states but are also present in
squeezed vacuum states. The annihilation operator of the
azimuthally polarized mode can be written as

â A ¼ ð�âx01 þ ây10Þ=
ffiffiffi
2

p
: (3)

An azimuthally polarized mode (as well as a radially
polarized mode) has a Schmidt rank of 2, i.e., that no
matter which basis one chooses, be it the Hermite-
Gaussian, Laguerre-Gaussian, or any other basis, one al-
ways needs two modes to describe this state. Here we
choose, in analogy with Eq. (1), the Hermite-Gaussian
basis to investigate the state.

The annihilation operator âA is associated with the

coherent azimuthally polarized eigenstate j�iA ¼
D̂Að�Þj0i with the displacement operator being defined as

D̂Að�Þ ¼ expð�âyA � ��âAÞ, � being the classical com-

plex amplitude of the field. To squeeze this state an appro-

priate squeezing operator can be defined ŜAð�Þ ¼
exp½ð��â2A � �ây2A Þ=2�, � being a parameter quantifying
the amount of squeezing. The bright squeezed azimuthally
polarized state is then given by

j�; �i ¼ D̂Að�ÞŜAð�Þj0i

¼ Ûx01

�
� �ffiffiffi

2
p ;

�

2

�
Ûy10

�
�ffiffiffi
2

p ;
�

2

�
Ŝx01;y10

�
� �

2

�
j0i:
(4)

We define Ûið�=
ffiffiffi
2

p
; �=2Þ ¼ D̂ið�=

ffiffiffi
2

p ÞŜið�=2Þ for de-
scribing the single modes and additionally the two-mode
squeezing operator

Ŝ x01;y10

�
� �

2

�
¼ exp½ð���âx01ây10 þ �âyx01â

y
y10Þ=2�:

(5)

Equation (4) clearly shows that j�; �i is a two-mode
entangled state, where the two-mode squeezing operator
[Eq. (5)] fully determines the degree of entanglement of
the state. This intrabeam entanglement can be utilized by
splitting the cylindrically polarized mode into its two basis
modes with the help of an adequate mode splitter. By
making use of the well-known polarization and spatial
Stokes parameters [23–25], three different kinds of mea-
surement sets can be performed on the two modes âx01 and
ây10 (Fig. 1): (a) polarization Stokes measurements on

mode âx01 and ây10, (b) spatial Stokes measurements on

mode âx01 and ây10, and (c) spatial Stokes measurements

on mode âx01 and polarization Stokes measurements on
mode ây10 or vice versa.

Because of the two-mode squeezing operator [Eq. (5)],
entanglement between modes âx01 and ây10 is present in all

three cases. Especially intriguing is case (c) which shows
entanglement between the spatial and polarization d.o.f.
We refer to this entanglement, where different d.o.f. are
measured in the two arms of the entangled state, as
continuous-variable hybrid entanglement in analogy with
the discrete variables.
To quantify these quantum correlations the continuous-

variable Duan criterion for nonseparability can be applied
to the Stokes parameters measured in the two spatially
separated subsystems a and b [26,27]. For a symmetric

system, i.e., h�X̂a�Ŷai ¼ h�X̂b�Ŷbi with X̂ and Ŷ being

squeezed
mode splitter

a) b) c)

FIG. 1 (color online). Three types of entanglement are con-
tained in a squeezed azimuthally polarized mode which can be
observed by utilizing a mode splitter: (a) polarization entangle-
ment, (b) spatial entanglement, and (c) hybrid entanglement.
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two arbitrary but conjugate quadrature operators, the
criterion is given by

0 � VðŜa�;d:o:f1 þ Ŝb�;d:o:f:2Þ þ VðŜa�;d:o:f:1 � Ŝb�;d:o:f:2Þ
< 4j�j; (6)

where V is the standard variance of an operator VðX̂Þ ¼
hX̂2i � hX̂i2 and � ¼ covðŜa�; Ŝa�Þ ¼ covðŜb�; Ŝb�Þ is the co-
variance of two Stokes parameters. The inequality (6) can
be evaluated for the three combinations of the Stokes pa-
rameters ð�; �Þ ¼ ð1; 2Þ, ð�; �Þ ¼ ð1; 3Þ, and ð�; �Þ ¼
ð2; 3Þ. By measuring the appropriate combination of polar-
ization or spatial Stokes parameters in arm a or b,
either polarization ðd:o:f:1; d:o:f:2Þ ¼ ðpol; polÞ, spatial
ðd:o:f:1; d:o:f:2Þ ¼ ðspa; spaÞ, or hybrid-entanglement,
i.e., ðd:o:f:1; d:o:f:2Þ ¼ ðspa; polÞ or ðd:o:f:1; d:o:f:2Þ ¼
ðpol; spaÞ, can be observed. One can then show that, for

example, the Stokes parameters Ŝ2 and Ŝ3 are entangled for
all combinations of (d.o.f.1, d.o.f.2):

VðŜa2;d:o:f:1 þ Ŝb2;d:o:f:2Þ þ VðŜa3;d:o:f:1 � Ŝb3;d:o:f:2Þ
¼ e�s coshs < 1: (7)

Here V is normalized to 4j�j and the parameter s
quantifies the amount of squeezing in the cylindrically
polarized mode. We would like to stress the very intriguing
feature that such continuous-variable hybrid entanglement
already exists in a quadrature squeezed cylindrically

polarized mode. In the following we will present an ex-
perimental setup which generates such a squeezed state.
We experimentally amplitude squeeze an azimuthally

polarized mode by exploiting the nonlinear Kerr effect in
a fiber which directly supports this mode. In the experiment
a mode-locked Ti:sapphire laser, centered at a wavelength
of 810 nm and producing 170 fs pulses, acts as a light
source. As a nonlinear medium a specially designed pho-
tonic crystal fiber with a core diameter of 940 nm and in its
center a subwavelength hollow channel (diameter 180 nm)
is chosen [Fig. 2(a)]. This specific structure allows an
azimuthally polarizedmode to bemaintained during propa-
gation, much like the linearly polarized eigenmodes of a
polarization-preserving fiber [28,29]. To efficiently excite
the desired mode inside the fiber a polarization converter
(ARCoptix) is used to generate an azimuthally polarized
modewhich is then coupled into the fiber. The output mode
of the fiber is shown in Fig. 2(b). Its asymmetric structure
arises from a minor distortion in the cladding structure of
the fiber. Therefore the general structure of the core is not
perfectly symmetric, leading to an azimuthally polarized
mode with slightly higher intensities along one axis.
In the experimental setup a Sagnac interferometer [30]

consisting of a 40 cm long fiber and a beam splitter with a
highly asymmetric splitting ratio of 90:10 is used [Fig. 3(a)].
The third-order nonlinear Kerr effect present in the specially
designed photonic crystal fiber generates quadrature squeez-
ing. However, for certain input energies amplitude squeezing
inside the interferometer is generated which can easily be
observed with a direct detection scheme [Fig. 3(b)] at the
output of the Sagnac loop.
The detection system consists of a detector with sub-

shot-noise resolution at a radio frequency sideband at
10.7 MHz and a high quantum efficiency silicon photodi-
ode. A coherent beam is used to determine the quantum
noise limit (QNL). We observe amplitude squeezing of the
azimuthally polarized mode of 0:6� 0:1 dB below the
QNL [Fig. 4(a)]. The squeezing was observed at pulse
energies of about 14 pJ, slightly above the fiber’s soliton
energy.
As has been shown, the squeezing of the azimuthally

polarized mode implies that we have generated a
continuous-variable hybrid entangled state. It should be

940 nm

180 nm

a) b)

0

0.5

1

FIG. 2 (color online). (a) The specially designed photonic
crystal fiber which supports the azimuthally polarized mode.
(b) Normalized mode intensity profile of the azimuthally polar-
ized mode at � ¼ 810 nm, measured after the fiber.

polarization
converter

90:10 BS

photonic crystal fiber

a) b)

c)

PBS

FIG. 3 (color online). (a) The experimental setup of the Sagnac loop to generate amplitude squeezing in the azimuthally polarized
mode [beam splitter (BS)]. (b) Direct detection is used to measure the amplitude squeezing. (c) The detection system to measure
amplitude correlations between the horizontally polarized TEM01 mode and the vertically polarized TEM10 mode [polarizing beam
splitter (PBS)].
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noted that the observed quadrature squeezing is a necessary
but not sufficient condition to fully verify continuous-
variable hybrid entanglement. The full verification of
the hybrid entanglement by observing the violation of the
Duan criterion for nonseparability [Eq. (6)] is part of future
investigations. However, a fundamental feature of this
entanglement is the intensity anticorrelations between the
horizontally polarized TEM01 and vertically polarized
TEM10 mode as stated in Eq. (3). These can be measured
with the detection system illustrated in Fig. 3(c). It consists
of a polarizing beam splitter (PBS) and two intensity
detectors with carefully balanced amplifiers. The PBS
acts as a mode splitter, dividing the azimuthally polarized
mode into a horizontally polarized TEM01 and a vertically
polarized TEM10 mode which impinge on the two detec-
tors. By taking the sum signal of the detectors the anti-
correlations are determined, while the QNL is measured
with a coherent beam. Anticorrelations of 0:5� 0:1 dB
below the QNL have been observed [Fig. 4(b)]. This
strongly indicates the existence of entanglement between
the horizontally polarized TEM01 mode and the vertically
polarized TEM10.

In conclusion, a novel kind of state, namely, a
continuous-variable hybrid-entangled state, has been pre-
sented. This state has the peculiar attribute that its quantum
hybrid entanglement is based on a structural inseparability

of the classical state itself. It has been theoretically shown
that such a highly complex state can be generated in a
remarkably convenient manner by squeezing a cylindri-
cally polarized mode. Experimentally a quadrature
squeezed azimuthally polarized mode has been demon-
strated, showing that the generation of hybrid-entangled
states is, in principle, feasible.
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FIG. 4 (color online). (a) A quantum noise reduction of 0.6 dB
is observed in the azimuthally polarized mode.
(b) Anticorrelations of 0.5 dB below the QNL of the horizontally
polarized TEM01 and vertically polarized TEM10 have been
measured. The insets illustrate the measured spatial modes and
the arrows indicate the polarization of the state.
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