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Wave-vector resolved radio frequency spectroscopy data for an ultracold trapped Fermi gas are reported

for several couplings at Tc, and extensively analyzed in terms of a pairing-fluctuation theory. We map the

evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular

Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant

Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is

consistent with a recent experimental observation as well as with quantum Monte Carlo data of

thermodynamic quantities of a unitary Fermi gas above Tc.
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While the existence of a high-temperature superfluid
phase in the BCS-BEC crossover of a strongly interacting
Fermi gas is experimentally well established, important
questions remain as to the nature of the gas above the
superfluid transition temperature Tc. In particular, the
question of whether or not a pseudogap state exists and
how to identify it is of importance [1]. This question may
have relevance to the controversy on the pseudogap state in
the high-Tc cuprates. While the origin of this state in the
cuprates is hotly debated, with atomic Fermi gases we can
answer the simpler question of whether or not strong
interactions and pairing fluctuations alone can lead to a
pseudogap phase. This, in turn, tells us whether using such
an approach to explain the pseudogap in the cuprates is a
viable option or if other mechanisms are required.

As a function of increasing attractive interactions, a
Fermi gas exhibits a crossover (the BCS-BEC crossover),
from a weakly attractive Fermi gas with a superfluid tran-
sition explained by BCS theory, to a Fermi gas where
attractions are so strong that the fermion pairs form mole-
cules and the gas is described as a molecular Bose gas with
a Bose-Einstein condensation transition. In the BCS limit
the phenomena of Cooper pairing and superfluidity occur
simultaneously at the phase transition, while in the BEC
limit pairing and Bose condensation are decoupled with the
pairing of fermions into molecules occurring well above
the condensation temperature. The pseudogap phase refers
to the normal state of a strongly interacting Fermi gas in the
center of this crossover, where it is proposed that pairs exist
above the superfluid transition in analogy with the normal
state of the gas in the BEC limit. However, unlike the pairs
in the BEC limit, the pairs in the pseudogap state have
many-body character with the underlying Fermi statistics
playing a crucial role, in analogy with the Cooper pairs of
the BCS limit. A key prediction of theories of the pseudo-
gap is that there should be a smooth evolution from the
many-body pairs in the center of the crossover to the

molecular pairs in the BEC limit [1,2] and accordingly,
in order to verify the existence of a pseudogap phase, it is
critical to examine the evolution of the spectral function
from the center of the crossover to the molecular limit [3].
Based on two recent experiments, conflicting conclu-

sions have been reached about the existence of a pseudo-
gap state in the strongly interacting Fermi gas. On the one
hand, thermodynamic measurements [4] have been inter-
preted as well described by Fermi-liquid theory, without
the need for a pseudogap state. On the other hand,
momentum-resolved radio frequency (rf) spectroscopy
[5], which measures the single-particle spectral function,
has been interpreted as evidence for a pseudogap state
above Tc.
In this work, we present a theoretical investigation

of the pseudogap regime based on the t-matrix pairing-
fluctuation approach of Ref. [3], addressing both the
single-particle spectral function and the thermodynamics
of the gas, as a function of interaction strength in the BCS-
BEC crossover. We find that, in the pseudogap regime, the
single-particle dispersion backbends at a wave vector kL
near the Fermi wave vector kF, indicating the existence of a
remnant Fermi surface in this strongly interacting gas and
the importance of Fermi statistics to the pairing. As inter-
actions are increased towards the BEC limit, kL disappears
rapidly when entering the molecular regime. This picture is
supported by a comparison of our theoretical results, where
we include the effects of the trap, with new experimental
data using momentum-resolved rf spectroscopy to probe
the gas for different interaction strengths. In addition, we
show that the theory also reproduces the observed linear
behavior in the thermodynamics.
By the experimental technique introduced in Ref. [6],

excitations of the trapped gas produced by an rf pulse are
analyzed by time-of-flight imaging to determine the
wave vector of the excited atoms once the trap has been
switched off. The new data are presented with an improved
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signal-to-noise ratio at Tc, which is accurately determined
as the temperature where the condensate fraction disap-
pears. We concentrate on the coupling range 0:0 &
ðkFaFÞ�1 & 1:0, because the evolution of interest from
the pseudogap state to the molecular Bose gas occurs on
the positive side of the resonance. Here, aF is the scattering
length associatedwith the Fano-Feshbach resonance and kF
is given by @2k2F=ð2mÞ ¼ EF ¼ @!0ð3NÞ1=3, where @ is the
Planck constant, m the atom mass, N the total number of
atoms, and !0 the average trap frequency (we set @ ¼ 1).

Ultracold Fermi gases are peculiar systems, in that their
interparticle coupling can be increased to the point when a
description in terms of a gas of molecular bosons holds, for
which a real gap exists in the single-particle spectra. This
molecular physics is of no interest in the context of the
pseudogap, in a similar fashion of molecular binding in
vacuum being distinct from Cooper pairing in the presence
of a Fermi surface. The question then arises about what
fermionic feature distinguishes the pseudogap from the
molecular phase. We shall find that the backbending of
the dispersions obtained from the single-particle spectral
function Aðk;!Þ (with wave vector k and frequency !)
occurs at a wave vector kL which remains close to kF over a
wide coupling range even approaching the molecular limit.
We refer to this special wave vector as kL because it is
reminiscent of the Luttinger theorem [7], according to
which in a Fermi liquid the radius kF of the Fermi sphere
is unaffected by the interaction.

Figure 1 compares the experimental and theoretical en-
ergy distribution curves (EDCs) at Tc for five different
couplings in thewindow of interest (see Ref. [8] for details).
We emphasize that the experimental data bear on an abso-
lute normalization, in that only the integral over wave
vector and energy of the EDCs has been normalized to
unity [8]. For this reason, there is no independent normal-
ization in the various panels at different k. This renders
quite stringent the comparison with the theoretical calcu-
lations, which in turn contain no adjustable parameters.

Good agreement results from this comparison. In particular,
the theoretical calculations well reproduce the asymmetry
of the experimental curves between positive and negative
energies, in addition to the peak positions, widths and
heights (note how the latter change by about 1 order of
magnitude from small to large k). Note further the excellent
agreement between the theoretical and experimental nega-
tive energy tails, and the gradual flattening of the EDCs
for increasing coupling due to the increase of intrapair
correlations.
In Fig. 2 the dispersion and full width at half maximum

of the peak at lower energies are reported over a dense set
of k values for the same couplings of Fig. 1, and compared
with our theoretical calculations. Note that a characteristic
backbending is revealed from these dispersions [9]. This
kind of backbending is typical of a BCS-like dispersion,
and is associated with the presence of a pseudogap in a
strongly interacting Fermi system [3,5,10–12]. In addition,
the large values of the widths (which are at least of the
order of EF) and their asymmetric behavior between
k < kF and k > kF are associated with strong deviations
from the expected behavior of a normal Fermi liquid
(which requires instead the quasiparticle widths to be
vanishingly small at kF [13]), and confirm the fact that
single-particle states in this region constitute poor quasi-
particles. Large values of the widths are not surprising in
the context of the pseudogap physics that results from
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FIG. 1 (color online). Experimental (circles) and theoretical
(solid lines) EDCs for the trap at Tc, for several couplings and
wave vectors.
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FIG. 2 (color online). (a) Dispersions and (b) widths of the
low-energy EDC peak. Experimental data (circles) and theoreti-
cal calculations for the trap (solid lines) are shown for the same
couplings of Fig. 1, and compared with the contribution from the
radial shell with the largest particle number (dashed lines). In the
left panels the free-particle dispersion k2=ð2mÞ is also reported
for comparison (thin solid lines).

PRL 106, 060402 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

11 FEBRUARY 2011

060402-2



pairing fluctuations [3]. Large widths were also obtained
by the self-consistent t-matrix approach of Ref. [14],
which, however, masked the occurrence of a pseudogap
near kF.

It is relevant to discuss how trap averaging affects
the above results, because different radial shells in the
trap correspond to different locations in the coupling-vs-
temperature phase diagram of the homogeneous system.
A reasonable hypothesis is that the radial shell with the
largest particle number (whose radius rmax is estimated

to be ð0:5–0:6ÞRF where RF ¼ ½2EF=ðm!2
0Þ�1=2 is the

Thomas-Fermi radius) contributes most to the total signal.
The dispersions and widths contributed by this shell at rmax

are represented by dashed lines in Fig. 2, which show good
agreement with the complete calculation. This indicates
that both the backbending of the dispersions and the asso-
ciated large widths are not an artifact of trap averaging.

Despite these deviations from the behavior of a normal
Fermi liquid, in the experimental data and theoretical
calculations there yet appears a feature which is preserved
from the physics of a Fermi liquid. That is the Luttinger
wave vector kL where the backbending occurs, which is
plotted at Tc vs ðkFaFÞ�1 in Fig. 3, for a homogeneous
[panel (a)] and trapped [panel (b)] system.

Figure 3(a) shows that for a homogeneous system kL
drops rapidly to zero when ðkFaFÞ�1 ’ 0:75, where
the pseudogap in Aðk; !Þ turns into a real gap and the
molecular limit is reached. Accordingly, we identify the
boundary between the pseudogap and molecular phases
where this drop occurs. Along this evolution into the
molecular regime, the disappearance of the underlying
Fermi surface about occurs when the molecular size be-
comes smaller than the interparticle spacing. The existence
of a remnant Fermi surface with a volume consistent with
the Luttinger theorem was already pointed out by ARPES
for the pseudogap phase of high-Tc superconductors [15],
but its importance for delimiting the pseudogap region

was not appreciated in that context [16] because the
interparticle interaction could not be controlled. The inset
of Fig. 3(a) shows the temperature dependence of kL for a
homogeneous system at unitarity (solid line). At high
temperatures when the pseudogap closes up, kL is identi-
fied as the value where the dispersion of the peak at lower
energy in Aðk;!Þ crosses the chemical potential [8]. This
does not contradict our argument that at low temperatures
the presence of a pseudogap requires an underlying Fermi
surface, since at high temperatures the underlying Fermi
surface of a Fermi liquid is not related to a pseudogap.

The plot also shows the temperature dependence of k�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m�0ðTÞp

(dashed line) and k� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m�ðTÞp

(dashed-

dotted line), where �0ðTÞ and �ðTÞ are the chemical
potentials of the noninteracting and interacting Fermi sys-
tems, in the order, at the temperature T. Note that kL about
coincides with k�0 , while k� is not related with kL.

Figure 3(b) shows the coupling dependence of kL at Tc

for the trapped system, for which the theoretical predic-
tions can be compared with the experimental data (the
latter are obtained by a BCS-like fit to the dispersions of
Fig. 2(a), see Ref. [8]). The good comparison that results
between theory and experiment confirms our identification
of kL as the relevant quantity for identifying the remnant
Fermi characteristics of the system in the pseudogap phase.
However, the occurrence of a pseudogap for a unitary

Fermi gas above Tc has recently been questioned, follow-
ing Ref. [4] where a linear dependence of the equation of
state as a function of ½kBT=�ðTÞ�2 (kB being Boltzmann
constant) was fitted by the Fermi-liquid equation of state
and then interpreted [17] as evidence that the Fermi-liquid
theory with no pseudogap can describe a unitary Fermi gas
above Tc. To compare with the data of Ref. [4] and resolve
this controversy, we have used the theoretical approach of
Ref. [3], which contains a robust pseudogap associated
with a non-Fermi-liquid behavior consistent with the data
obtained by momentum-resolved rf spectroscopy, also to
calculate the thermodynamic properties of a homogeneous
system above Tc. Figure 4(a) reports the pressure in the
grand-canonical ensemble vs ½kBT=�ðTÞ�2 as in Ref. [4],
and shows that the linear behavior seen in the experimental
data and quantum Monte Carlo (QMC) calculations also
results from our t-matrix approach, both above and below
the temperature at which the pseudogap appears (indicated
by the vertical arrow). The inset of Fig. 4(a) shows that
this linear behavior can be ascribed to the pronounced
temperature dependence of the chemical potential,
because a nonlinear behavior results when transforming
½kBT=�ðTÞ�2 to ðT=TFÞ2 over the relevant range. The same
change of variables can be performed in the experimental
[18] and QMC [19,20] data, to obtain the total energy in the
canonical ensemble as a function of ðT=TFÞ2 reported in
Fig. 4(b). This shows that in the new variable the linear
behavior is lost.
Yet, it remains difficult to appreciate directly from this

thermodynamic quantity the presence of a pseudogap in a
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FIG. 3 (color online). (a) Coupling dependence of the
Luttinger wave vector kL for a homogeneous system at Tc,
according to the theory of Ref. [3] (solid line) [the value at
unitarity from the QMC calculation of Ref. [22] is also reported
(star)]. The inset shows the temperature dependence of kL at
unitarity (solid line), and compares it with those obtained from
the temperature dependence of the chemical potential of the
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coupling dependence of kL for the trap system at Tc.
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unitary Fermi gas aboveTc even by the t-matrix calculation,
despite the fact that a pseudogap is clearly present in the
density of states obtained by the t matrix as shown in the
inset of Fig. 4(b) where deviations from the noninteracting

behavior
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½!þ�ðTcÞ�=EF

p

are evident. Accordingly, by
numerical differentiation of the energy data we have ob-
tained in Fig. 4(c) the specific heat vs T=TF. A sharp upturn
of this quantity, beginning at a temperatureT�well aboveTc

where the pseudogap sets in, results clearly from the
t-matrix calculation, and it is also visible from the QMC
data at the corresponding value of Tc.

The experimental data in Fig. 4(c) appear too scattered
to draw definite conclusions about the presence of the
upturn and thus of a pseudogap above Tc. A similar upturn
of the specific heat at a temperature T� above Tc was
measured in underdoped cuprates and interpreted as the

onset of the pseudogap regime, whereby a ‘‘residual super-
conductivity’’ remains far above Tc [21].
In conclusion, we have provided clear experimental and

theoretical evidence for non-Fermi-liquid behavior in the
normal phase of a strongly interacting Fermi gas, which we
have qualified in terms of a pseudogap picture. We have
further shown that this picture is also consistent with the
thermodynamic behavior of the system.
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guide for the QMC data. The behavior of the n.i. Fermi gas
(broken line) is reported for reference [8].
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