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Regulation of intrinsic noise in gene expression is essential for many cellular functions. Correspondingly,

there is considerable interest in understanding how different molecular mechanisms of gene expression

impact variations in protein levels across a population of cells. In this work, we analyze a stochasticmodel of

bursty gene expression which considers general waiting-time distributions governing arrival and decay of

proteins. Bymapping the system tomodels analyzed in queueing theory,we derive analytical expressions for

the noise in steady-state protein distributions. The derived results extend previous work by including the

effects of arbitrary probability distributions representing the effects of molecular memory and bursting. The

analytical expressions obtained provide insight into the role of transcriptional, post-transcriptional, and post-

translational mechanisms in controlling the noise in gene expression.
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Regulation of gene expression is at the core of cellular
adaptation and response to changing environments. Given
that the underlying processes are intrinsically stochastic,
cellular regulation must be designed to control variability
(noise) in gene expression [1]. While noise reduction is
essential in many cases, regulatory mechanisms can also
exploit the intrinsic stochasticity to increase noise and
generate phenotypic heterogeneity in a clonal population
of cells [2]. Quantifying the contributions of different
sources of intrinsic noise using stochastic models of gene
expression [3–5] is thus an important step towards under-
standing cellular processes and variations in cell
populations.

Several recent studies have focused on quantifying noise
in gene expression. Experiments have shown that protein
production often occurs in ‘‘bursts’’ [6,7] and single-
molecule measurements have also provided evidence for
transcriptional bursting, i.e., production of messenger
RNAs (mRNAs) in bursts [8–10]. The analysis and inter-
pretation of such experimental studies has been aided by
the development of coarse-grained stochastic models of
gene expression. The simplest of these considers the basic
processes (transcription, translation, and degradation) as
elementary Poisson processes [11] with exponential
waiting-time distributions. However, since these processes
are known to involve multiple biochemical steps, the cor-
responding waiting-time distributions can be more general
than the ‘‘memoryless’’ exponential distribution [12]. An
important question then arises: how do gene expression
mechanisms involving molecular memory effects influence
the noise in protein distributions?

Motivated by the preceding observations, we introduce a
model including general waiting-time distributions for
processes governing the arrival of bursts and the decay of
proteins (termed ‘‘gestation’’ and ‘‘senescence’’ effects,
respectively [12]). The underlying reaction scheme for
the models analyzed in this work is shown in Fig. 1.

Production of mRNAs occurs in independent bursts and
the time interval between the arrival of consecutive mRNA
bursts is characterized by random variable T with corre-
sponding probability density function (PDF) fðtÞ. The
number of mRNAs produced in a single transcriptional
burst is characterized by the random variable mb. Each
mRNA independently gives rise to a random number of
proteins (characterized by random variable pb) before it is
degraded. For the basic models of translation, pb follows
the geometric distribution [6,7,13]. However, more general
schemes of gene expression (e.g., involving post-
transcriptional regulation [14]) can give rise to protein
burst distributions that deviate significantly from a geo-
metric distribution. Proteins are degraded independently
and the waiting-time distribution for protein decay is char-
acterized by the PDF hðtÞ.
In the limit that the mRNA lifetime (�m) is much shorter

than the protein lifetime (�p), i.e.,
�m
�p

� 1, the evolution of

cellular protein concentrations can be modeled by pro-
cesses governing arrival and decay of proteins alone
[13,15]. Unless otherwise stated, the analysis in this
Letter will focus on this burst limit, in which proteins are
considered to arrive in independent instantaneous bursts
arising from the underlying mRNA burst. In this limit, we
have shown in recent work [16] that the processes involved
in gene expression can be mapped onto models analyzed in
queueing theory. In this mapping, individual proteins are
the analogs of customers in queueing models. The bursty
synthesis of proteins then corresponds to the arrival of
customers in batches, whereas the protein decay-time dis-
tribution is the analog of the service-time distribution for
each customer. Given that degradation of each protein is
independent of others in the system, the process maps onto
queueing systems with infinite servers. Correspondingly,
the gene expression model in Fig. 1 maps onto what is
known as a GIX=G=1 system in the queueing literature.
In this notation, the symbol G refers to the general
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waiting-time distribution and IX indicates that the custom-
ers arrive in batches of random size X, where X is drawn
independently each time from an arbitrary distribution.

The GIX=G=1 system has been analyzed in previous
work in queueing theory [17]. In the following, we briefly
review the notation and relevant results from the queueing
theory analysis. As in Fig. 1, fðtÞ and hðtÞ denote the PDF
for the arrival time and service time, respectively, with FðtÞ
and HðtÞ as the corresponding cumulative density func-
tions (CDF). The distribution of batch size X has the
corresponding generating function AðzÞ, defined as AðzÞ ¼P1

i¼1 PðX ¼ iÞzi. The kth factorial moment of batch size

X, denoted by Ak, is given by Ak ¼ ½dkAðzÞ=dzk�jz¼1. The
number of customers in service at time t is denoted by NðtÞ
and analytical expressions have been derived for the rth
binomial moment BrðtÞ of NðtÞ [17]. These results can be
used to derive expressions for all the moments of NðtÞ, for
example E½NðtÞ� ¼ B1ðtÞ and Var½NðtÞ� ¼ 2B2ðtÞ þ
B1ðtÞ � B2

1ðtÞ. In the following, we will focus on two

general subcategories of the GIX=G=1 system for which
closed-form analytical expressions can be derived for the
mean and variance of steady-state protein distributions.
These correspond to two cases: (A) arbitrary distributions
for gestation and bursting with a Poisson process governing
protein degradation and (B) arbitrary distributions for
bursting and senescence with a Poisson process governing
burst arrival.

Consider first case A, for which arbitrary gestation and
bursting effects are included. In this case, the random
variable T characterizing the time interval between bursts
is drawn from an arbitrary PDF fðtÞ. The protein decay-
time distribution hðtÞ is taken to be an exponential function
with hðtÞ ¼ �pe

��pt and the mean protein lifetime is

given by �p ¼ 1=�p. The corresponding queueing system

is GIX=M=1 where M indicates that the process of cus-
tomer departure, which is the analog of protein decay, is
Markovian. AðzÞ corresponds to the generating function of
burst size distribution (determined by random variablesmb

and pb in Fig. 1) andNðtÞ denotes the number of proteins in

the cell at time t. The previous analysis [17] has derived
expressions for the steady-state mean and variance corre-
sponding to N ¼ limt!1NðtÞ for the GIX=M=1 queue
as [18]:

E½N� ¼ 1

�phTiA1;

Var½N� ¼ E½N�
�
1þ fLð�pÞ

1� fLð�pÞA1 � E½N� þ A2

2A1

�
; (1)

where hTi is the mean of PDF fðtÞ and fLðsÞ is the Laplace
transform of fðtÞ.
To translate the result Eq. (1) into an expression for the

noise in protein distributions, we derive expressions for A1

and A2 in terms of variables characterizing mRNA and
protein burst distributions. In general, each mRNA will
produce a random number of proteins (pb) and furthermore
the number of mRNAs in the burst is also a random
variable (mb). The number of proteins produced in a single
burst is thus a compound random variable. Corres-
pondingly, using standard results from probability theory
[19], we derive the following equations for burst size
parameters (A1 and A2) in terms of mb and pb:

A1 ¼ hmbihpbi;
A2 ¼ hmbið�2

pb
� hpbiÞ þ ð�2

mb
þ hmbi2Þhpbi2;

(2)

where the symbols h::i and � represent the mean and
standard deviation, respectively.
Using Eq. (2), in combination with identification of the

random variable N with the corresponding variable char-
acterizing the number of proteins (ps), we obtain the
following expressions for the mean and coefficient of
variance (noise) of the steady-state protein distribution:

hpsi ¼
�p
hTi hmbihpbi;

�2
ps

hpsi2
¼ 1

hpsi þ
hTi
2�p

�
Kg þ �2

mb
=hmbi2

þ �2
pb
=hpbi2 � 1=hpbi

hmbi
�
;

(3)

where

Kg ¼ 2

�
fLð�pÞ

1� fLð�pÞ �
1

�phTi
�
þ 1 (4)

is denoted as the gestation factor.
Different contributions to the noise in protein distribu-

tions are highlighted in Eq. (3): gestation effects, mRNA
transcriptional bursting, and translational bursting from a
single mRNA, which correspond to the terms Kg,

�2
mb
=hmbi2, and �2

pb
=hpbi2, respectively. The first two

terms can be modified by transcriptional regulation
and the last term can be tuned by post-transcriptional
regulation. It is noteworthy that each source contributes

FIG. 1 (color online). Reaction scheme for the underlying gene
expression model. Production of mRNAs occurs in bursts (char-
acterized by random variable mb with arbitrary distribution) and
each mRNA gives rise to a burst of proteins (characterized by
random variable pb with arbitrary distribution) before it decays
(with lifetime �m). The waiting-time distributions for burst
arrival and decay of proteins are characterized by the functions
fðtÞ and hðtÞ, respectively.
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additively to the overall noise in the steady-state distribu-
tion. Moreover, while the noise due to gestation effects is
independent of the degree of transcriptional bursting, the
noise contribution from translational bursting is effectively
reduced by transcriptional bursting.

While Eq. (3) is valid for general gestation effects, it is
of interest to consider specific examples. We consider the
case such that there is a constant delay between arrival of
consecutive mRNA bursts, i.e., the waiting-time distribu-
tion is fðtÞ ¼ �ðt� TdÞ. In this case, the gestation factor is
given byKg ¼ 2e��pTd=ð1� e��pTdÞ � 2=�pTd þ 1. The

corresponding expression for the noise in protein distribu-
tions Eq. (3), considering a general case which also in-
cludes the effects of post-transcriptional regulation [14], is
in excellent agreement with results from stochastic simu-
lations [Fig. 2(a)]. It is noteworthy that Kg can be non-

vanishing even though the time interval between
consecutive bursts is fixed (i.e., �2

T ¼ 0). In contrast to
previous work [12], which suggests that the contribution of
gestation effects to the noise vanishes when �2

T ¼ 0, our
result shows that Kg can be tuned from 0 to 1 as �pTd is

varied.
While the results derived above are valid in the limit

�m � �p, an exact expression for the noise in the general

case (i.e., without invoking the condition �m � �p and for

general gestation and bursting distributions) is difficult to
obtain. However, a useful approximation can be obtained
by noting that, for the basic gene expression models, the
exact result is obtained by scaling the terms in the bracket
in Eq. (3) with a time-averaging factor

�p
�mþ�p

[3,20]. Using

the approximation that the time-averaging factor is the

same for general gestation and bursting distributions, we
obtain

�2
ps

hpsi2
� 1

hpsi þ
hTi
2�p

�
Kg þ �2

mb
=hmbi2

þ �2
pb
=hpbi2 � 1=hpbi

hmbi
�

�p
�m þ �p

: (5)

It is instructive to compare Eq. (5) with the result derived
in previous work [12] which assumes the basic protein
production reaction scheme such that �2

pb
¼ hpbi2 þ

hpbi. Considering this specific case, we note that Eq. (5)
is identical to the previous result [12] apart from the terms
corresponding to the gestation factorKg. The connection to

the previous result can be seen by expanding the Laplace
transform fLð�pÞ in terms of moments of T. By assuming

�phTi is small and hTni scales as the nth power of hTi or
less, Kg can be approximated by Kg � �2

T=hTi2 which

corresponds to the previous result. Since the parameter
1=ð�phTiÞ measures the mean number of bursts occurring

during the protein lifetime, this indicates that the previous
result [12] is valid for the case of frequent bursting during a
protein lifetime, and breaks down when bursts occur over
larger time intervals [Fig. 2(b)].
We now consider case B, which corresponds to arbitrary

distributions for bursting and senescence effects along with
exponential waiting-time distributions for burst arrival. For
this case, we take the waiting time for protein degradation
to be drawn from an arbitrary distribution characterized by
PDF hðtÞ and CDF HðtÞ. The waiting time between con-
secutive bursts is characterized by an exponential distribu-
tion with fðtÞ ¼ �e��t. The corresponding system,
following the mapping to queueing theory, is the
MX=G=1 queue. The steady-state mean and variance of
N for this queue has been obtained in previous work [17]:

E½N� ¼ �A1

Z 1

0
½1�HðtÞ�dt;

Var½N� ¼ E½N� þ �A2

Z 1

0
½1�HðtÞ�2dt: (6)

By taking Eq. (2) and the relation hTi ¼ 1=� into ac-
count, the mean and the noise for arbitrary senescence and
bursting distribution can be derived as

hpsi ¼ A1

hTi
Z 1

0
½1�HðtÞ�dt ¼ �p

hTi hmbihpbi;

�2
ps

hpsi2
¼ 1

hpsi þ
hTi
2�p

�
1þ �2

mb
=hmbi2

þ �2
pb
=hpbi2 � 1=hpbi

hmbi
�
Ks;

(7)

where

FIG. 2 (color online). The noise vs �phTi from analytical
expressions and stochastic simulations. (a) The time interval
between consecutive bursts is fixed and only 1 mRNA is pro-
duced in each burst. The protein production is under post-
transcriptional regulation [14] such that �2

pb
¼ 0:67hpbi2 þ

hpbi and �m=�p � 0:02. (b) The time interval between bursts

is drawn from a gamma distribution and the number of mRNAs
created in one burst is drawn from a Poisson distribution. The
number of proteins created by each mRNA follows a geometric
distribution. The parameters are �m=�p ¼ 0:2, hmbi ¼ 10,

�2
mb
=hmbi2 ¼ 0:1, and �2

T=hTi2 ¼ 0:2. While Eq. (5) agrees

with simulations, the result from Ref. [12] is less accurate
when �phTi is large.
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Ks ¼ 2
R1
0 ½1�HðtÞ�2dt

�p
¼ 2� 2

R1
0 HðtÞ½1�HðtÞ�dt

�p
;

(8)

is denoted as the senescence factor.
It is noteworthy Eqs. (3) and (7) have multiple terms in

common. The terms characterizing the noise from tran-
scriptional and translational bursting remain unchanged.
However, unlike the gestation factor that contributes to the
total noise additively, the senescence factor serves as a
scaling factor for the total noise. While there is no obvious
upper limit on the value of Kg, the upper bound for Ks is 2

as is evident from Eq. (8). In general, as the distribution
hðtÞ grows more sharply peaked, the Ks value increases.
When hðtÞ becomes a delta function, Ks reaches its maxi-
mum value.

The general results derived in this work will serve as
useful inputs for the analysis and interpretation of diverse
experimental studies of gene expression. Some examples
are the following: (1) Recent experiments on single-cell
studies of HIV-1 viral infections have focused on the
frequency and degree of transcriptional bursting [21]. For
such studies, the derived results can be used to relate
measurements of interarrival waiting-time distributions
and burst distributions to the noise in protein distributions.
(2) Experimental data and computational models of the
cell cycle in yeast indicate that modeling the basic pro-
cesses of gene expression as Poisson processes gives rise to
unrealistically large noise in protein distributions [22],
thereby suggesting that regulatory schemes which change
distributions to reduce the noise are employed by the cell.
The analytical expressions derived highlight different con-
tributions to noise and can thus provide insight into how
different regulatory schemes can lead to noise reduction.
(3) More generally, the results derived can be used in the
analysis of inverse problems, i.e., using experimental mea-
surements of intrinsic noise to determine parameters of the
underlying kinetic models. Such efforts, in turn, can lead to
further insights into cellular factors that impact gene regu-
lation, based on experimental observations of noise in gene
expression.

In summary, we have analyzed the noise in protein
distributions for general stochastic models of gene expres-
sion. The present work extends previous analysis by deriv-
ing analytical results for the noise in protein distributions
for arbitrary gestation, senescence, and bursting mecha-
nisms. The expressions obtained provide insight into how
different sources contribute to the noise in protein levels
which can lead to phenotypic heterogeneity in isogenic
populations. The results derived will thus serve as useful
inputs for the analysis and interpretation of experiments
probing stochastic gene expression and its phenotypic
consequences. At a broader level, this work demonstrates
the benefits of developing a mapping between models of

stochastic gene expression and queueing systems which
has potential applications for research in both fields. The
extensive analytical approaches and tools developed in
queueing theory can now be employed to analyze stochas-
tic processes in gene expression. It is also anticipated that
future analysis of regulatory mechanisms for gene expres-
sion will lead to new problems and challenges for queueing
theory.
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