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A relation between a class of stationary points of the energy landscape of continuous spin models on a

lattice and the configurations of an Ising model defined on the same lattice suggests an approximate

expression for themicrocanonical density of states. Based on this approximationwe conjecture that if aOðnÞ
modelwith ferromagnetic interactions on a lattice has a phase transition, its critical energy density is equal to

that of then ¼ 1 case, i.e., an Ising systemwith the same interactions. The conjecture holds true in the case of

long-range interactions. For nearest-neighbor interactions, numerical results are consistent with the con-

jecture for n ¼ 2 and n ¼ 3 in three dimensions. For n ¼ 2 in two dimensions (XY model) the conjecture

yields a prediction for the critical energy of the Berežinskij-Kosterlitz-Thouless transition, which would be

equal to that of the two-dimensional Ising model. We discuss available numerical data in this respect.
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The stationary points of a function of many variables are
the points of vanishing gradient and play a relevant role in
quite a few theoretical methods in physics. When the func-
tion is the energy of a many-body system these methods are
referred to as ‘‘energy landscape methods’’ [1]. Examples
of applications include clusters [1], disordered systems and
glasses [2], biomolecules and protein folding [3]. Energy
landscape methods allow us to estimate dynamic as well as
static properties. As far as equilibrium is concerned, the
classic application is Stillinger and Weber’s thermody-
namic formalism [4], where minima are the stationary
points to be considered. Later, all the stationary points of
the energy, including saddles of any index [5] have been
taken into account, for instance to characterize glassy be-
havior [6]. It was further realized that stationary points of
theHamiltonian are connectedwith topology changes of the
phase space accessible to the system, leading to the con-
jecture that some of them are at the origin of thermody-
namic phase transitions [7,8]; quite some research activity
followed, reviewed in [9,10]. Although in equilibrium sta-
tistical mechanics phase transitions in systems with non-
fluctuating particle numbers have been mainly studied
within the canonical ensemble, the relation between sta-
tionary points of theHamiltonian and equilibrium statistical
properties is more transparent in a microcanonical setting.
This can be understood in an intuitiveway by observing that
the entropy is defined as [11] sð"Þ ¼ 1

N log!ð"Þ, where " ¼
E=N is the energy density and ! is the density of states
(DoS). For a systemwithN degrees of freedomdescribed by
continuous variables the latter can be written as

!ð"Þ ¼
Z
�
�ðH � N"Þd� ¼

Z
�\�"

d�

jrH j ; (1)

where � is phase space and d� its volume measure, �" is
the hypersurface of constant energy E ¼ N", and d�
stands for the (N � 1)-dimensional Hausdorff measure.

The rightmost integral stems from a coarea formula [12].
At a stationary point,rH ¼ 0 and the integrand diverges,
so that its contribution to! is clearly important. Indeed, the
DoS is nonanalytic at stationary values of the energy for any
finiteN, and so is the entropy, at variancewith the canonical
free energy which may develop nonanalyticities only in the
thermodynamic limit N ! 1 [13]. Microcanonical non-
analyticities at finite N are in one-to-one correspondence
with stationary configurations; however, the ‘‘strength’’ of
such nonanalyticities generically decreases linearly withN;
i.e., the first k derivatives of the entropy are continuous,
where k isOðNÞ (KSS theorem [14,15]). The usual thermo-
dynamic functions are given by low-order derivatives of the
entropy, so that these nonanalyticities can be observed only
for very small N from noisy data. In the thermodynamic
limit most of these nonanalyticities disappear. Only those
singularities (if any) that survive (or appear) in that limit are
typically associated to thermodynamic phase transitions
and coincide with the canonical nonanalyticities if equiva-
lence of statistical ensembles holds [16,17]. This may sug-
gest that finite-N nonanalyticities are totally unrelated to
thermodynamic phase transitions. However, this is not true,
since Franzosi and Pettini showed that stationary points are
a necessary condition for phase transitions to occur, at least
for systems with short-range interactions [18]. Moreover, a
possible scenario allowing some finite-N singularities to
survive in the thermodynamic limit has been depicted in
[14]. Therefore, the relation between the energy landscape
and thermodynamic phase transitions is still an open
problem.
The purpose of the present Letter is to apply an energy

landscape analysis to OðnÞ spin models. Loosely speaking,
we take seriously the idea that the stationary points con-
tribution to the DoS is the most important one, and by
considering a particular class of stationary points we con-
struct an approximate form of the DoS which suggests a
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relation between the phase transitions occurring in these
models. Let us consider a classical isotropic spin model
defined on a lattice (or more generally on a graph) with
Hamiltonian

H ðnÞ ¼ � XN
i;j¼1

JijSi � Sj ¼ � XN
i;j¼1

Jij
Xn
�¼1

Sai S
a
j ; (2)

where i and j run over the N lattice sites and the classical
spin vectors Si ¼ ðS1i ; . . . ; Sni Þ have unitary norm, i.e.,P

n
a¼1ðSai Þ2 ¼ 1 8 i ¼ 1; . . . ; N. The real matrix Jij dic-

tates the interactions; in case they are long ranged a nor-
malization is understood such as to obtain an extensive
energy, using, e.g., the Kac prescription [17]. The
Hamiltonian (2) is globally invariant under theOðnÞ group.
In the special cases n ¼ 1, n ¼ 2, and n ¼ 3, one obtains
the Ising, XY, and Heisenberg models, respectively. The
case n ¼ 1 is even more special because Oð1Þ � Z2 is a
discrete symmetry group. In this special case the
Hamiltonian (2) becomes the Ising Hamiltonian

H ð1Þ ¼ � XN
i;j¼1

Jij�i�j; (3)

where �i ¼ �1 8 i. In all the other cases n � 2 the OðnÞ
group is continuous; each spin vector Si lives on an n� 1
unit sphere Sn�1

1 . Let us now consider the stationary

configurations of H ðnÞ for n � 2, i.e., the solutions �S ¼
ð �S1; . . . ; �SNÞ of the N vector equations rH ðnÞ ¼ 0. The
latter can be written as nN scalar equations,

�XN
j¼1

JkjS
a
j þ�kS

a
k ¼0; a¼1; . . . ;n; k¼1; . . . ;N; (4)

where the �’s are N Lagrange multipliers, plus the N
nonlinear constraints

P
n
a¼1ðSai Þ2 ¼ 1, which prevent the

above equations from being easily solved. However, a
particular class of solutions can be found by assuming
that all the spins are parallel or antiparallel: S1i ¼ � � � ¼
Sn�1
i ¼ 0 8 i. In this case, the Nðn� 1Þ equations (4)

with a ¼ 1; . . . ; n� 1, corresponding to the first n� 1
components of the spins, are trivially satisfied. As to the
nth component, the constraints ðSni Þ2 ¼ 1 imply Sni ¼
�i 8 i, so that the remaining N equations read as

� XN
j¼1

Jkj�j þ �k�k ¼ 0; k ¼ 1; . . . ; N: (5)

The above equations are satisfied by any of the 2N possible
choices of the �’s provided one puts �k ¼
ðPN

j¼1 Jkj�jÞ=�k, k ¼ 1; . . . ; N. The Hamiltonian (2) be-

comes the Ising Hamiltonian (3) when the spins belong to
this class of stationary configurations. Therefore we have a
one-to-one correspondence between a class of stationary
configurations of the Hamiltonian (2) of aOðnÞ spin model
and all the configurations of the Ising model (3), i.e., the
Ising model defined on the same graph with the same
interaction matrix Jij; the corresponding stationary values

are just the energy levels of this Ising Hamiltonian.
We shall refer to the class of stationary configurations

�Si ¼ ð0; . . . ; 0; �iÞ 8 i ¼ 1; . . . ; N as ‘‘Ising stationary
configurations.’’ There will be also other stationary con-
figurations; nonetheless, the 2N Ising ones are a non-
negligible fraction of the whole, especially at large N
because the number of stationary points of a generic func-
tion of N variables is expected to be OðeNÞ [19].
The above results hold forOðnÞ and Isingmodels defined

on any graph. From now on we shall restrict to regular
d-dimensional hypercubic lattices and to ferromagnetic
interactions Jij > 0. In this case, in the thermodynamic

limit N ! 1 the energy density levels of the Ising

Hamiltonian (3), H ð1Þð�1; . . . ; �NÞ=N 8 �i ¼ �1, be-
come dense and cover the whole energy density range of
all the OðnÞ models. This suggests that Ising stationary
configurations are the most important ones, so that we

may approximate the DoS !ðnÞð"Þ of an OðnÞ model in
terms of these configurations. To this end, let us first rewrite
Eq. (1) as

!ðnÞð"Þ ¼ X
p

Z
Up\�"

d�

jrH ðnÞj ; (6)

wherep runs over the 2N Ising stationary configurations and
Up is a neighborhood of the pth Ising configuration such

that fUpg2Np¼1 is a proper partition of the configuration space

� ¼ ðSn�1ÞN , that coincides with phase space for spin
models (2). Since Ising configurations are isolated points
in the configuration space of aOðnÞmodel, such a partition
always exists. Let us now introduce two assumptions
allowing us to write Eq. (6) in a more transparent, albeit
approximate, way. (i) At a given value of ", the largest

contribution to !ðnÞð"Þ is likely to come from those Up

such that H ðnÞðpÞ ¼ N", because if H ðnÞðqÞ � N" then

jrH ðnÞðxÞj�08 x2Uq\�", unless a zero in jrH ðnÞðxÞj
comes from a stationary configuration which does not
belong to the Ising class. According to our previous con-
siderations, we assume that non-Ising stationary configura-
tions can be neglected. We shall therefore consider only
stationary configurations at energy density " in the sum (6).
(ii)We shall assume that the integrals in Eq. (6) depend only
on "; i.e., the neighborhoods U can be deformed such as

Z
Up\�"

d�

jrH ðnÞj ¼
Z
Uq\�"

d�

jrH ðnÞj ¼ gðnÞð"Þ (7)

for any p, q such that H ðnÞðpÞ ¼ H ðnÞðqÞ ¼ N". Hence,
using assumptions (i) and (ii), Eq. (6) becomes

!ðnÞð"Þ ’ gðnÞð"ÞX
p

�½H ðnÞðpÞ � N"�: (8)

The sum on the right-hand side of Eq. (8) is over
Ising configurations, so that it equals the DoS of the
corresponding Ising model, that we shall denote by

!ð1Þð"Þ. We can thus write

!ðnÞð"Þ ’ !ð1Þð"ÞgðnÞð"Þ: (9)
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Were Eq. (9) exact, it would imply that if !ð1Þð"Þ is

nonanalytic at " ¼ "c, then also !ðnÞð"Þ is nonanalytic at

" ¼ "c for any n, unless the function gðnÞð"Þ precisely
cancels this nonanalyticity, which seems a rather special
case. We do not expect Eq. (9) to be exact, even in the
thermodynamic limitN ! 1, unless, again, gð"Þ has some
very special features: with a generic gð"Þ a DoS of the form
(9) would not reproduce the known critical exponents of the
OðnÞ universality classes [20]. However, it can be shown
that with a generic gð"Þ Eq. (9) correctly implies a negative
value for the specific heat critical exponent of OðnÞ spin
models (i.e., the specific heat of continuousmodels does not
diverge at criticality, but rather has a cusplike behavior).
This is a common feature of OðnÞ models [20] and reinfor-
ces the belief that the approximation (9), although rather
crude, may properly capture the main features of the non-
analyticities of the DoS when N ! 1, as the location of
such nonanalyticities. Therefore we put forward the
following:

Conjecture.—If a OðnÞ spin model defined on a
d-dimensional hypercubic lattice with Hamiltonian (2)
and ferromagnetic interaction matrix Jij > 0 has a phase

transition, its critical energy density "c ¼ Ec=N is equal to
that of the n ¼ 1 case, i.e., a system of Ising spins with the
same interactions.

The above conjecture concerns the critical value of the
control parameter of the microcanonical ensemble, the
energy density, and says nothing about critical tempera-
tures, which may well be different—and typically are—at
different n.

We now discuss known results, both analytical and
numerical, in order to assess the validity of this conjecture
in some particular cases. The results we were able to
collect are reported in Table I. The conjecture is true for
systems with long-range interactions on d-dimensional

lattices, Jij ¼ Nð�=dÞ�1ji� jj�� with 0 � �< d; � ¼ 0

is the mean-field case of models defined on complete
graphs with the same interaction strength between any
two sites, Jij ¼ 1=N. All of these systems have a mean-

field-like phase transition at the maximum value of " ("c ¼
0 with our choice of units), with critical temperatures
Tc ¼ 1=n [21]. We stress again that critical energy den-
sities are equal but critical temperatures are not and depend
on n. As to systems with nearest-neighbor interactions,
" 2 ½�d; d� and the conjecture is true for d ¼ 1 at any
n, although this case is somehow trivial because there is no
transition at finite temperature. For d ¼ 2, the Mermin-
Wagner theorem rules out a long-range-ordered phase for
any n > 1. However, a remarkable transition between
a disordered and a quasiordered phase occurs for n ¼ 2
(XY model), usually referred to as the Berežinskij-
Kosterlitz-Thouless (BKT) transition [27]. In Table I we
report the best recent estimate of the critical temperature
obtained by Hasenbusch [23] and the corresponding criti-
cal energy density (estimated from a Monte Carlo simula-
tion of a system with 256� 256 spins [22]). The difference
between this value and the exact value of the critical energy
density of the Ising model on a square lattice is around 2%.
This difference, though small, appears significant since it is
orders of magnitude larger than the statistical error on the
numerical estimate of the energy. Based on this result one
should conclude that the conjecture is not verified in the
case of the XY model in d ¼ 2. However, we are compar-
ing an exact result in the thermodynamic limit with a
numerical estimate of the energy on a finite lattice, whose
statistical accuracy does not consider the systematic error
due to the finite size effects, which could be quite large in
this particular case [28,29]. Moreover, also the precise
determination of the critical temperature of the BKT tran-
sition is a subtle and difficult task due to its elusive nature.
This is witnessed by the remarkable spread of values of Tc

reported in different papers: the summary given in
Ref. [29] shows that estimated critical temperatures vary
in the interval [0.88,0.99] while Ref. [30] gave [0.85,0.95]
as confidence interval for Tc. The energy values given in
Ref. [22] corresponding to both these temperature intervals

do contain the Ising value "c ¼ � ffiffiffi
2

p
; for instance, the

temperature interval [0.85,0.95] corresponds to "c 2
½�1:48;�1:38�. We thus believe that the available data
are not conclusive as far as a confirmation of the conjecture
is concerned in this particular case. For d ¼ 3 the com-
parison is entirely between simulation outcomes, since no
exact solution exists even for the Ising case. Results in
Table I show that the critical energy measured for a Oð2Þ
spin system (XY model) [25] is clearly consistent with that
measured for the Ising case [24]. The difference between
the estimated "c of the Oð3Þ case (Heisenberg model) [26]
and that of the Ising model is less than 1.5 times the error
on the latter. Therefore the two estimates are consistent if
one considers quoted errors as standard statistical errors.
In conclusion, by considering a special class of station-

ary points of the energy landscape of OðnÞ spin models we

TABLE I. Comparison of critical energy densities "c and
critical temperatures Tc for ferromagnetic models with long-
range (LR) interactions (first row) and nearest-neighbor inter-
actions on a d-dimensional hypercubic lattice (all the other
rows).

Model "c Tc Derivation method

LRa Ising 0 1 Exact solution

OðnÞ 0 1=n Exact solution [21]

d ¼ 1 Ising �1 0 Exact solution

OðnÞ �1 0 Exact solution

d ¼ 2 Ising �1:414 . . . 2:269 . . . Exact solutionb

Oð2Þ �1:445 7ð4Þ 0.892 9(1) Numerical [22,23]

d ¼ 3 Ising �0:991ð1Þ 4.511 2(3) Numerical [24]

Oð2Þ �0:991 884ð6Þ 2.201 6(7) Numerical [25]

Oð3Þ �0:989 6ð1Þ 1.442 98(2) Numerical [26]

aLong-range interactions Jij / ji� jj�� with 0 � �< d.
bExact values are "c ¼ � ffiffiffi

2
p

and Tc ¼ 2= logð1þ ffiffiffi
2

p Þ.
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have proposed an approximate form of the microcanonical
DoS and conjectured that the critical energy densities of
OðnÞ models with n � 2 equal those of the corresponding
Ising models. Available analytical and numerical data are
consistent with the conjecture, with the exception of the
Oð2Þ case in d ¼ 2. The latter, however, seems the most
interesting one. On the one hand, we already noted that the
best recent estimates suggest the conjecture does not hold
in this case but available data seem not conclusive. On the
other hand, in this case the conjecture yields an exact
prediction for the critical energy of the BKT transition in
a model that is not exactly solvable. Therefore, in our
opinion, more precise numerical estimates of the critical
energy of the BKT transition would be very interesting, as
well as estimates of other critical parameters made using
the conjectured value of "c. Were the validity of the con-
jecture ruled out in the XY case in d ¼ 2, it would confirm
once more the special nature of the BKT transition and our
conjecture might still be valid in a weaker form, i.e.,
restricted to OðnÞ spin models with symmetry-breaking
ferromagnetic phase transitions. Conversely, besides yield-
ing an exact value for the critical energy of the BKT
transition, a confirmation of the conjecture for the XY
model in two dimensions might hint at a stronger version
of the conjecture. Such a stronger conjecture would be that
anyOðnÞ spin model on a d-dimensional hypercubic lattice
has a phase transition precisely at the critical energy den-
sity of the d-dimensional Ising model, even for n > 2 in
d ¼ 2. The presence of a phase transition in OðnÞ models
at any n in two dimensions has already been suggested by
Patrascioiu et al. [31]. Although, to the best of our knowl-
edge, no direct evidence of such a transition has been found
yet, the possibility remains that the transition exists but is
weak and elusive: our conjecture might help in finding it,
suggesting where to look. Finally, we note that our con-
jecture might be true for a completely different reason than
the one argued in the present Letter: the phase transitions in
OðnÞ models may all come from one of the finite-N singu-

larities of !ðnÞ which survives as N ! 1 because it be-
comes asymptotically flat; i.e., the determinant of the

Hessian of H ðnÞ goes to zero. This is the condition for a
finite-N singularity to survive given in [14]. However,
preliminary results for n ¼ 2 and d ¼ 2, 3 [32] do not
support this scenario.

In principle, our results could apply to more general
models, like those with competing interactions or frustra-
tion; however, in this case the overlap of the energy ranges
between Ising and OðnÞ models is no longer guaranteed so
that further work is needed to understand whether such
generalization may be possible.
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