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Superconducting wires without time-reversal and spin-rotation symmetries can be driven into a

topological phase that supports Majorana bound states. Direct detection of these zero-energy states is

complicated by the proliferation of low-lying excitations in a disordered multimode wire. We show that

the phase transition itself is signaled by a quantized thermal conductance and electrical shot noise power,

irrespective of the degree of disorder. In a ring geometry, the phase transition is signaled by a period

doubling of the magnetoconductance oscillations. These signatures directly follow from the identification

of the sign of the determinant of the reflection matrix as a topological quantum number.

DOI: 10.1103/PhysRevLett.106.057001 PACS numbers: 74.78.Na, 03.65.Vf, 74.25.fc, 74.45.+c

It has been predicted theoretically [1] that the s-wave
proximity effect of a superconducting substrate can drive
a spin-polarized and spin-orbit coupled semiconductor
nanowire into a topological phase [2–4], with a Majorana
fermion trapped at each end of the wire. There exists now a
variety of proposals [5–7] for topological quantum com-
puting in nanowires that hope to benefit from the long
coherence time expected for Majorana fermions. A super-
conducting proximity effect in InAs wires (which have
the required strong spin-orbit coupling) has already been
demonstrated in zero magnetic field [8], and now the
experimental challenge is to drive the system through the
Majorana phase transition in a parallel field.

Proposals to detect the topological phase have focused
on the detection of the Majorana bound states at the end
points of the wire, through their effect on the current-
voltage characteristic [9,10] or the ac Josephson effect
[11,12]. These signatures of the topological phase would
stand out in a clean single-mode wire, but the multiple
modes and potential fluctuations in a realistic system are
expected to produce a chain of coupledMajorana’s [13,14],
which would form a band of low-lying excitations that
would be difficult to distinguish from ordinary fermionic
bound states [15].

Here we propose an altogether different detection strat-
egy: Rather than trying to detect the Majorana bound states
inside the topological phase, we propose to detect the
phase transition itself. A topological phase transition is
characterized by a change in the topological quantum
number Q. The value of Q ¼ ð�1Þm is determined by the
parity of the number m of Majorana bound states at each
end of the wire, withQ ¼ �1 in the topological phase [16].

In accord with earlier work [17], we relate the topologi-
cal quantum number to the determinant of the matrix r of
quasiparticle reflection amplitudes, which crosses zero at
the phase transition. This immediately implies a unit trans-
mission eigenvalue at the transition. Disorder may shift
the position of the transition but it cannot affect the unit

height of the transmission peak. We propose experiments
to measure the transmission peak in both thermal and
electrical transport properties, and support our analytical
predictions by computer simulations.
We consider a two-terminal transport geometry, consist-

ing of a disordered superconducting wire of length L,
connected by clean normal-metal leads to reservoirs in
thermal equilibrium (temperature �0). The leads support
2N right-moving modes and 2N left-moving modes at the
Fermi level, with mode amplitudes cþ and c�, respec-
tively. The spin degree of freedom is included in the
number N, while the factor of 2 counts the electron and
hole degree of freedom.
The 4N � 4N unitary scattering matrix S relates incom-

ing and outgoing mode amplitudes,

c�;L

cþ;R

� �
¼ S

cþ;L

c�;R

� �
; S ¼ r t0

t r0
� �

; (1)

where the labels L and R distinguish modes in the left
and right lead. The four blocks of S define the 2N � 2N
reflection matrices r, r0 and transmission matrices t, t0.
Time-reversal symmetry and spin-rotation symmetry are

broken in the superconductor, but electron-hole symmetry
remains. At the Fermi energy electron-hole symmetry
implies that if (u, v) is an electron-hole eigenstate, then
also (v�, u�). Using this symmetry we can choose a basis
such that all modes have purely real amplitudes. In this
socalled Majorana basis S is a real orthogonal matrix,
St ¼ Sy ¼ S�1. (The superscript t indicates the transpose
of a matrix.) More specifically, since detS ¼ 1 the scat-
tering matrix is an element of the special orthogonal group
SOð4NÞ. This is symmetry class D [18–23].
The scattering matrix in class D has the polar decom-

position

S ¼ O1 0
0 O2

� �
tanh� ðcosh�Þ�1

ðcosh�Þ�1 � tanh�

� �
O3 0
0 O4

� �
;

(2)
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in terms of four orthogonal matrices Op 2 SOð2NÞ and
a diagonal real matrix � with diagonal elements �n 2
ð�1;1Þ. The absolute value j�nj is called a Lyapunov
exponent, related to the transmission eigenvalue Tn 2
½0; 1� by Tn ¼ 1=cosh2�n. We identify

Q ¼ signQ; Q ¼ Detr ¼ Detr0 ¼ Y2N
n¼1

tanh�n: (3)

This relation expresses the fact that reflection from a
Majorana bound state contributes a scattering phase shift
of �, so a phase factor of �1. The sign of

Q
n tanh�n thus

equals the parity of the number m of Majorana bound
states at one end of the wire [24]. (It makes no difference
which end, and indeed r and r0 give the same Q.)

To put this expression for Q into context, we first note
that it may be written equivalently as Q ¼ DetO1O3 if we
restrict the �n’s to non-negative values and allow DetOp to

equal either þ1 or �1. The sign of Q then corresponds to
the topological classification of a class-D network model
derived by Merz and Chalker [17]. We also note thatQ can
be written equivalently in terms of the Pfaffian of lnMMy
(with M the transfer matrix in a suitable basis) [24]. A
Pfaffian relation for the topological quantum numberQclean

in class D has been derived by Kitaev [4] for a clean,
translationally invariant system. We will verify later on
that Q and Qclean agree for a clean system.

An immediate consequence of Eq. (3) is that at the
topological phase transition one of the �n’s vanishes
[17,20,21], so the corresponding transmission eigenvalue
Tn ¼ 1 at the transition point. The sign change of Q
ensures that Tn fully reaches its maximal value of unity,
it cannot stop short of it without introducing a discontinuity
in Q. Generically, there will be only a single unit trans-
mission eigenvalue at the transition, the others being ex-
ponentially suppressed by the superconducting gap. The
thermal conductance Gth ¼ G0

P
nTn of the wire will

then show a peak of quantized height G0 ¼ �2k2B�0=6h
at the transition.

Our claim of a quantized conductance at the transition
point is consistent with earlier work [19–22] on class D
ensembles. There a broad distribution of the conductance
was found in the large-L limit, but the key difference is that
we are considering a single disordered sample of finite
length, and the value of the control parameter at which
the conductance is quantized is sample specific. We will
now demonstrate how the peak of quantized conductance
arises, first for a simple analytically solvable model, then
for a more complete microscopic Hamiltonian that we
solve numerically.

The analytically solvable model is the effective low-
energy Hamiltonian of a class-D superconductor with a
random gap, which for a single mode in the Majorana basis
has the form

H ¼ �i@vF�z@=@xþ�ðxÞ�y: (4)

We have assumed, for simplicity, that right-movers and
left-movers have the same velocity vF, but otherwise this is

the generic form to linear order in momentum, constrained
by the electron-hole symmetry requirement H ¼ �H�.
An eigenstate � of H at energy zero satisfies

�ðxÞ ¼ exp

�
� 1

@vF

�x

Z x

0
�ðx0Þdx0

�
�ð0Þ: (5)

By substituting �ð0Þ ¼ ð1; rÞ, �ðLÞ ¼ ðt; 0Þ we obtain the
reflection amplitude

r ¼ tanhðL ��=@vFÞ; �� ¼ L�1
Z L

0
�ðxÞdx: (6)

In this simple model, a change of sign of the spatially

averaged gap �� is the signature of a topological phase
transition [25].

If �� is varied by some external control parameter, the

thermal conductance Gth ¼ G0cosh
�2ðL ��=@vFÞ has a

peak at the transition point �� ¼ 0, of height G0 and width
@vF=L (Thouless energy). The 1=cosh2 line shape is the
same as for a thermally broadened tunneling resonance, but
the quantized peak height (irrespective of any asymmetry
in the coupling to the left and right lead) is highly
distinctive.
For a more realistic microscopic description of the

quantized conductance peak, we have performed a
numerical simulation of the model [1] of a semiconductor
nanowire on a superconducting substrate. The Bogoliubov–
de Gennes Hamiltonian

H ¼ HR � EF �
�� EF � �yH

�
R�y

� �
(7)

couples electron and hole excitations near the Fermi
energy EF through an s-wave superconducting order
parameter �. Electron-hole symmetry is expressed by

�y�yH ��y�y ¼ �H ; (8)

where the Pauli matrices �y and �y act, respectively, on

the spin and the electron-hole degree of freedom. The
excitations are confined to a wire of width W and length L
in the x-y plane of the semiconductor surface inversion
layer, where their dynamics is governed by the Rashba
Hamiltonian

HR ¼ p2

2meff

þUðrÞ þ �so

@
ð�xpy � �ypxÞ þ 1

2
geff�BB�x:

(9)

The spin is coupled to the momentum p ¼ �i@@=@r by
the Rashba effect, and polarized through the Zeeman effect
by a magnetic fieldB parallel to the wire (in the x direction).
Characteristic length and energy scales are lso ¼ @

2=meff�so

and Eso ¼ meff�
2
so=@

2. Typical values in InAs are
lso ¼ 100 nm, Eso ¼ 0:1 meV, geff�B ¼ 2 meV=T.
We have solved the scattering problem numerically [26]

by discretizing the Hamiltonian (7) on a square lattice
(lattice constant a), with a short-range electrostatic disor-
der potential Uðx; yÞ that varies randomly from site to
site, distributed uniformly in the interval (�U0, U0).
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(Equivalent results are obtained for long-range disorder
[24].) The disordered superconducting wire (S) is con-
nected at the two ends to clean metal leads (N1, N2),
obtained by setting U � 0, � � 0 for x < 0, x > L.
Results for the thermal conductance and topological quan-
tum number are shown in Fig. 1, as a function of the Fermi
energy (corresponding to a variation in gate voltage). For
the parameters listed in the caption the number N of modes
in the normal leads increases from 1 to 2 at EF=Eso � 10
and from 2 to 3 at EF=Eso � 15. We emphasize that Fig. 1
shows raw data, without any averaging over disorder.

For a clean system (U0 ¼ 0, black curves) the results are
entirely as expected: A topologically nontrivial phase (with
Detr < 0) may appear for odd N while there is no topo-
logical phase forN even [27–29]. The topological quantum
number of an infinitely long clean wire (when the compo-
nent px of momentum along the wire is a good quantum
number) can be calculated from the Hamiltonian H ðpxÞ
using Kitaev’s Pfaffian formula [4,29],

Qclean ¼ sgnðPf½�y�yHð0Þ�Pf½�y�yHð�=aÞ�Þ: (10)

(The multiplication by �y�y ensures that the Pfaffian is

calculated of an antisymmetric matrix.) The arrows in
Fig. 1 indicate where Qclean changes sign, in good agree-
ment with the sign change of Q calculated from Eq. (3).
(The agreement is not exact because L is finite.)

Upon adding disorder Qclean can no longer be used
(because px is no longer conserved), and we rely on a
sign change ofQ to locate the topological phase transition.

Figure 1 shows that disorder moves the peaks closer to-
gether, until they merge and the topological phase disap-
pears for sufficiently strong disorder. We have also
observed the inverse process, a disorder-induced splitting
of a peak and the appearance of a topological phase, in a
different parameter regime than shown in Fig. 1. Our key
point is that, as long as the phase transition persists, dis-
order has no effect on the height of the conductance peak,
which remains precisely quantized—without any finite-
size effects.
Since electrical conduction is somewhat easier to mea-

sure than thermal conduction, we now discuss two alter-
native signatures of the topological phase transition which
are purely electrical. An electrical current I1 is injected
into the superconducting wire from the normal-metal con-
tact N1, which is at a voltage V1 relative to the grounded
superconductor. An electrical current I2 is transmitted as
quasiparticles into the grounded contact N2, the difference
I1 � I2 being drained to ground as Cooper pairs via the
superconductor. The nonlocal conductance G ¼ �I2=V1 is
determined by the time averaged current �I2, while the
correlator of the time dependent fluctuations �I2 deter-
mines the shot noise power P ¼ R1

�1 dth�I2ð0Þ�I2ðtÞi
(in the regime kB�0 � eV1 where thermal noise can be
neglected).
These two electrical transport properties are given in

terms of the N � N transmission matrices tee and the (from
electron to electron and from electron to hole) by the
expressions [30]

G¼ðe2=hÞTrT �; P¼ðe3V1=hÞTrðT þ�T 2�Þ; (11)

T � ¼ tyeetee � tyhethe: (12)

Electron-hole symmetry relates tee ¼ t�hh and the ¼ t�eh.
This directly implies that TrT þ ¼ 1

2 Trtt
y ¼ 1

2

P
nTn.

If in addition we assume that at most one of the Tn’s is
nonzero we find that T � vanishes [24]. We conclude that
G remains zero across the topological phase transition,
while P=V1 peaks at the quantized value e3=2h. This is
the second signature of the phase transition [31].
The third signature is in the electrical conductance.

Since G ¼ 0 for a single open transmission channel, we
add (topologically trivial) open channels by means of
a parallel normal-metal conductor in a ring geometry. A
magnetic flux � through the ring produces Aharonov-
Bohm oscillations with a periodicity �� ¼ h=e�. The
effective charge e� ¼ e if electrons or holes can be trans-
mitted individually through the superconducting arm of the
ring, while e� ¼ 2e if only Cooper pairs can be transmitted
[32,33]. We thus expect a period doubling from h=2e to
h=e of the magnetoconductance oscillations at the phase
transition, which is indeed observed in the computer simu-
lations (Fig. 2). To show the relative robustness of the
effect to thermal averaging, we repeated the calculation
at several different temperatures �0. For Eso ’ 0:1 meV the
characteristic peak at the phase transition remains visible

FIG. 1 (color online). Thermal conductance and determinant
of reflection matrix of a disordered multimode superconducting
wire as a function of Fermi energy. The curves are calculated
numerically from the Hamiltonian (7)–(9) on a square lattice
(lattice constant a ¼ lso=20), for parameter valuesW ¼ lso, L ¼
10lso, � ¼ 10Eso, geff�BB ¼ 21Eso, and three different disorder
strengths U0. The arrows indicate the expected position of the
topological phase transition in an infinite clean wire (U0 ¼ 0,
L ! 1), calculated from Eq. (10). Disorder reduces the topo-
logically nontrivial interval (where Detr < 0), and may even
remove it completely, but the conductance quantization remains
unaffected as long as the phase transition persists.

PRL 106, 057001 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

4 FEBRUARY 2011

057001-3



for temperatures in the readily accessible range of
100–500 mK.

In conclusion, our analytical considerations and numeri-
cal simulations of a model Hamiltonian [1] of a disordered
InAs wire on a superconducting substrate show three sig-
natures of the transition into the topological phase (Figs. 1
and 2): A quantized thermal conductance and electrical
shot noise [31], and a period doubling of the magneto-
conductance oscillations. These unique signatures of
the Majorana phase transition provide alternatives to the
detection of Majorana bound states [9–13,15], which are
fundamentally insensitive to the obscuring effects of
disorder in a multimode wire.
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