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We study quantum fidelity, the overlap between two ground states of a many-body system, focusing on

the thermodynamic regime. We show how a drop in fidelity near a critical point encodes universal

information about a quantum phase transition. Our general scaling results are illustrated in the quantum

Ising chain for which a remarkably simple expression for fidelity is found.
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A quantum phase transition (QPT) happens when dra-
matic changes in the ground state properties of a quantum
system can be induced by a tiny variation of an external
parameter [1]. This external parameter can be the strength
of a magnetic field in spin systems (e.g., Ising chains [2]
and spin-1 Bose-Einstein condensates [3]), intensity of a
laser beam creating a lattice for cold atom emulators of
Hubbard models [4], or dopant concentration in high-Tc

superconductors [5]. At the heart of the sharp transition lies
nonanalyticity of the ground state wave function across the
critical point separating the two phases. QPTs, traditionally
associated with condensed matter physics, are nowadays
intensively studied from the quantum information perspec-
tive (see, e.g., [6]).

Quantum fidelity—also referred to as fidelity—is a
popular concept of quantum information science defined
here as the overlap between two quantum states

F ðg; �Þ ¼ jhg� �jgþ �ij; (1)

where jgi is a ground state wave function of a many-body

Hamiltonian ĤðgÞ describing the system exposed to an
external field g, and � is a small parameter difference. It
provides the most basic probe into the dramatic change of
the wave function near and at the critical point [7].

The recent surge in studies of fidelity follows the
discovery that quantum criticality promotes decay of
fidelity [7]. This is in agreement with the intuitive picture
of a QPT: as system properties change dramatically in
the neighborhood of the critical point, ground state
wave functions taken at different values of the external
parameter—jg� �i and jgþ �i—have little in common
and so their overlap decreases.

As fidelity is given by the angle between two vectors in
the Hilbert space, it is a geometric quantity [8]. Thus, it has
been proposed as a robust geometric probe of quantum
criticality applicable to all systems undergoing a QPT
regardless of their symmetries and order parameters whose
prior knowledge is required in traditional approaches to
QPTs. Fidelity has been recently studied in this context in
several models of condensed matter physics (see [9] and
references therein).

Besides being an efficient probe of quantum criticality,
fidelity appears in numerous problems in quantum physics.
Indeed, it is related to density of topological defects after a
quench [10–12], decoherence rate of a test qubit interacting
with an out-of-equilibrium environment [13], orthogonal-
ity catastrophe of condensed matter systems (see [14] and
the references citing it). Therefore, its understanding has
an interdisciplinary impact.
To unravel the influence of quantum criticality on fidel-

ity, one has to determine if its drop near the critical point
encodes universal information about the transition in addi-
tion to providing the location of the critical point. This
universal information is given by the critical exponents and
reflects symmetries of the model rather than its micro-
scopic details. In the ‘‘small system limit’’, which broadly
speaking corresponds to � ! 0 at fixed system size N, the
answer is positive. This is explored in the fidelity suscep-
tibility approach where [7,9,15]

F ðg; �Þ ’ 1� �2�FðgÞ=2; (2)

and �F stands for fidelity susceptibility. Universal infor-
mation, or simply the critical exponent �, is encoded in its

scaling: at the critical point �FðgcÞ � N2=d�, while far
away from it �FðgÞ � Njg� gcjd��2, where d is system
dimensionality [11,12,16].
In the thermodynamic limit, which broadly speaking

corresponds to N ! 1 at fixed �, the answer is positive
as well. This is our key result stating that

lnF ðg; �Þ ’ �Nj�jd�A
�
g� gc
j�j

�
; (3)

where A is a scaling function. In particular, we see that
fidelity is nonanalytic in � at the critical point,
lnF ðgc; �Þ � �Nj�jd�, while away from it, i.e., for j�j �
jg� gcj � 1, we obtain

lnF ðg; �Þ � �N�2jg� gcjd��2; (4)

after expansion of the scaling function. These results, in
particular, set firm foundations for usage of fidelity as a
probe of quantum criticality in thermodynamically-large
systems. In the context of theoretical studies of QPTs, the
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strength of the fidelity approach lies in its simplicity: all
information encoded in the ground state wave function(s)
is ‘‘compactified’’ into a single number. A competing
approach for extraction of the exponent �—study of the
asymptotic decay of correlation functions to obtain the
correlation length—is considerably more complicated.
Below we illustrate these predictions on the paradigmatic
model of quantum phase transitions, the Ising chain, and
discuss the scaling theory that leads to (3) and (4).

The Hamiltonian of the one dimensional Ising chain
reads [1]

ĤðgÞ ¼ �XN
i¼1

ð�x
i�

x
iþ1 þ g�z

i Þ;

where g stands for a magnetic field acting along the
z direction. Above the spin-spin interactions try to enforce
�x polarization of spins, while the magnetic field tries to
polarize spins along its direction (þ z for g > 0). This
competition results in two critical points at gc ¼ �1: the
system is in the ferromagnetic (paramagnetic) phase for
�1< g< 1 (jgj> 1). The critical exponent � ¼ 1. This
model is solved by mapping spins onto noninteracting
fermions via the Jordan-Wigner transformation [1].

Behavior of fidelity (1) around the critical point, g � gc,
is summarized in Fig. 1. In Fig. 1(a) the parameter differ-
ence � is kept fixed and the system size is increased.
For small system sizes we reproduce the known result,
lnF ��N2 [7], resulting from finite size scaling effects
(see, e.g., [9,11,12,16]). For large system sizes, however,
we obtain lnF ��N in agreement with (3) and the fidel-
ity per site approach [17–19]. As is shown in Fig. 2, the
transition between the two regimes takes place when

Nj�j � 1; (5)

which will be discussed below.
Similarly, we observe two distinct regimes when the

system size N is kept fixed and the parameter difference
� is varied [Fig. 1(b)]. For Nj�j � 1 we observe lnF �
��2, in agreement with (2), while for Nj�j � 1 we find
lnF ��j�j in agreement with (3). In the latter fidelity
approaches nonanalytic limit (where @�F at � ¼ 0 is
undefined) reflecting singularities of the ground state
wave function resulting from the QPT [20].
We also see on both panels of Fig. 1 that all curves

collapse for Nj�j � 1, while they stay distinct in the
opposite limit. Thus, for Nj�j � 1 sensitivity of fidelity
to quantum criticality is enhanced. This can be understood
if we focus on Fig. 1(a): in the large N limit dramatic
changes in the ground state wave function near the critical
point are expected.
As analytical results for fidelity are scarce, we find it

remarkable that we can derive accurate analytical descrip-
tion in the complicated limit of Nj�j � 1, where
the Taylor expansion (2) fails. To proceed, we calculate
F ð1þ �; �Þ, where � measures distance from the critical
point. For the Ising chain F ¼ �k>0fk, where fk ¼
cosð�þðkÞ=2� ��ðkÞ=2Þ and tanð��ðkÞÞ ¼ sink=ð1þ ��
�� coskÞ. We stay close to the critical point so that
0 � j�j, j�j � 1 and introduce natural parameterization:
c ¼ �=j�j. Taking the limit of N ! 1 at fixed � the
product �kfk can be changed into expðN R

dk lnfk=2�Þ,
which can be further simplified to

lnF ’ �Nj�jAðcÞ (6)
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FIG. 1 (color online). Fidelity of the Ising chain near the
critical point as a function of (a) the system size N at fixed � ¼
10�4 and (b) parameter difference � at the fixed system size N ¼
105. On both panels the curves from top to bottom correspond to
F ð1; �Þ, F ð1þ �; �Þ and F ð1þ 5�; �Þ.
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FIG. 2 (color online). Study of the crossover between the
‘‘small system limit’’ and the thermodynamic limit illustrated
in Fig. 1. As the system size is increased in Fig. 1(a), the slope of
the curves changes smoothly from 2 (corresponding to lnF �
�N2) to 1 (corresponding to lnF ��N). The crossover region
between the two limits is centered around N ¼ N3=2 where the

slope equals 3=2. To find it, we have calculated numerically
F ðg; �Þ vs N—as in Fig. 1(a)—for various �’s and found that
N3=2j�j � 1. This is illustrated in this figure where data sets from

top to bottom correspond to results obtained for g ¼ 1, 1þ �
and 1þ 5�, respectively [similarly as in Fig. 1(a)]. The power-
law fits (straight lines) to numerical data (crosses) give N3=2 ¼
aj�j�b, where b ¼ 0:995� 0:003 for all three fits, while the
prefactor a changes between the fits from 3.6 to 0.3. Similar
analysis can be done on curves shown in Fig. 1(b) providing the
same result. Thus, we conclude that the crossover condition
reads Nj�j � 1 near the Ising critical point.
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in the leading order in � and �. This result is in prefect
agreement with our universal scaling law (3): note that �,
d ¼ 1 in our model and c ¼ ðg� gcÞ=j�j. Moreover, it
agrees well with exact numerical simulations: Fig. 3.
Above AðcÞ is given by

AðcÞ ¼
(
1
4 þ jcjKðc1Þ

2� þ ðjcj�1ÞImEðc2Þ
4� ; jcj � 1

jcj
4 � jcjKðc1Þ

2� � ðjcj�1ÞImEðc2Þ
4� ; jcj> 1:

(7)

where c1 ¼ �4jcj=ðjcj � 1Þ2, c2 ¼ ðjcj þ 1Þ2=ðjcj � 1Þ2,
and K and E are complete elliptic integrals of the first
and second kind, respectively. Agreement between (7) and
numerics is very good: see Fig. 4 for detailed comparison
of AðcÞ to numerics. Several interesting results can be
obtained now.

First, Eq. (6) shows analytically how the so-called
Anderson catastrophe—disappearance of the overlap be-
tween distinct ground states of an infinitely large many-
body quantum system [14]—happens in the Ising chain.

Second, Eq. (6) explains the lack of collapse of the
various curves providing fidelity around the critical point
in the Nj�j � 1 limit. Indeed, fidelity calculated for two
ground states symmetrically around the critical point is
F ð1; �Þ ’ expð�Nj�j=4Þ, but if one of the ground states
is obtained at the critical point, F ð1� �; �Þ ’
expð� Nj�jð�� 2Þ=4�Þ. In the opposite limit of Nj�j �
1, F ’ 1� �2N2=16 in both cases explaining the collapse
of all curves in this limit in Fig. 1.

Third, there is a singularity in the derivative of fidelity
when one of the states is calculated at the critical point:
dF ðg� �; �Þ=dgjg¼gc¼1 is divergent when N ! 1 at

fixed �. This reflects singularity of the wave function
at the critical point approached in the thermodynamic
limit. Quantitatively, dAðcÞ=dcjc!1� ¼ lnj1� cj=4��
3 ln2=4�þ ð1� 1Þ=8þOðð1� cÞ lnj1� cjÞ, which is

logarithmically divergent at c ¼ 1 (Fig. 4). This diver-
gence is a signature of a pinch point found in [17–19]
when fidelity between two distinct ground states was
studied. The logarithmic divergence in the Ising chain
was numerically observed in [19].
Last but not least, we obtain from (6) a compact ex-

pression for fidelity away from the critical point. Taking
jcj � 1 (but still j�j ¼ jc�j � 1), AðcÞ ’ 1=16jcj and so

F ’ expð�N�2=16j�jÞ; (8)

in agreement with (4). This reduces to a known result for
fidelity susceptibility when the argument of the exponent is
small and so F ’ 1� �2N=16j�j (see, e.g., [9]), but pro-
vides a new result in the opposite limit where lowest order
of the Taylor expansion is insufficient. We notice also that
(8) is analytical in � even in the limit of N ! 1: there are
no singularities expected when the system is far away from
the critical point.
Below we derive general scaling results (3) and (4). This

can be done by studying the scaling parameter

~dðgþ �; g� �Þ ¼ � lim
N!1 lnF ðg; �Þ=N;

introduced in [17] in the context of fidelity per site ap-
proach to the thermodynamic limit. We expect that this
limit is reached when

min½�ðgþ �Þ; �ðg� �Þ� � L; (9)
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FIG. 3 (color online). Fidelity F ðg; �Þ of the Ising chain near
the critical point: thermodynamic limit (main plot) vs ‘‘small
system limit’’ (inset). Main plot: black curve is our analytic
approximation (6), while red crosses come from numerics. Both
were obtained for N ¼ 2	 105 and � ¼ 10�4 (Nj�j � 1).
Inset: numerical result for N ¼ 103 and � ¼ 10�4 (Nj�j � 1).
In the ‘‘small system limit’’ fidelity stays close to unity at any
distance from the critical point, while in the thermodynamic
limit it can interpolate between zero and unity.
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FIG. 4 (color online). Upper plot: scaling function AðcÞ of the
Ising chain. The black line provides the analytic result (7), while
the red crosses show numerics (i.e., lnF =Nj�j). The inset high-
lights singularity at c ¼ 1. Lower plot: logarithmic divergence of
dA=dcjc¼1 discussed in the text. The solid black line is the
derivative of (7), while the red dashed line is a numerical result:
the difference between the two near the pinch point at c ¼ 1 is
due to the finite system size N [19]. It disappears for N ! 1. In
both plots numerics is done for N ¼ 105 and � ¼ �10�3.
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where �ðgÞ is the correlation length at magnetic field g and
L is the linear size of the system (N ¼ Ld for a
d-dimensional system). Indeed, the smaller of the two
correlation lengths sets the scale on which the states enter-
ing fidelity ‘‘monitor’’ each other (1). In particular, it
explains our results showing that the thermodynamic limit
is reached even when one of the states is calculated at the
critical point and so its correlation length is infinite. Near a
critical point (9) is equivalent to Lj�j� � 1 [21]. For the
Ising chain studied above it reads Nj�j � 1 properly
predicting the crossover condition (5) obtained from nu-
merical simulations (Fig. 2).

Generalizing the scaling theory of second order QPTs
(Sec. 1.4 of [22]), we propose the following scaling ansatz

for the universal part of the scaling parameter ~dðgc þ �þ
�; gc þ �� �Þ ¼ b�dfðð�þ �Þb1=�; ð�� �Þb1=�Þ, where
f is the scaling function, b is the scaling factor, and � is
the critical exponent providing divergence of the coherence
length �� jg� gcj��. The scaling function depends on
both �þ � and �� � as they are renormalized simulta-
neously. The factor b�d appears for dimensional reasons.
Scaling of �þ � and �� � is given by scaling of the

correlation length �ð�� �Þ ¼ b�ðð�� �Þb1=�Þ.
Taking g ¼ gc þ �, introducing natural parameteriza-

tion � ¼ cj�j, and fixing the scale of renormalization

through j�jb1=� ¼ 1 we obtain ~dðgþ �; g� �Þ ¼
j�jd�fðcþ 1; c� 1Þ. It gives (3) after setting fðcþ 1;
c� 1Þ ¼ AðcÞ. In a general context, (3) shows how uni-
versal part of the scaling parameter causes the Anderson
catastrophe near a critical point.

The scaling function AðcÞ can be simplified away from
the critical point. We assume below �, � > 0 for simplicity,

take � � � � 1, and set b through ð�þ �Þb1=� ¼ 1
exploring the freedom to choose the renormalization scale.

A simple calculation results in ~dðgþ �; g� �Þ ¼
ð�þ �Þd�fð1; ð�� �Þ=ð�þ �ÞÞ, where the second argu-

ment of f is close to unity. Expanding f in it we get ~dðgþ
�; g� �Þ � 2�2�d��2f00ð1; xÞjx¼1 as fð1; xÞ has a mini-
mum equal to zero at x ¼ 1. Thus, away from a critical
point we end up with (4). When the system is small
enough, N�2j�jd��2 � 1, but still in the thermodynamic
limit (9), we reproduce the known result for fidelity sus-
ceptibility 1�F � �2Nj�jd��2 [11,12,16]. Otherwise, (4)
provides a new result.

On general grounds, one can expect that for systems
with d� 
 2 nonuniversal (system-specific) corrections to
the above scaling relations may be significant [12].

Summarizing, our work characterizes fidelity—a mod-
ern probe of quantum criticality—in the thermodynamic
limit. We have derived, and verified on a specific model,

new universal scaling properties of fidelity. These findings
should be experimentally relevant as the first experimental
studies of ground state fidelity have been already
done [23].
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