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We study numerically the formation of long-lived transient shear bands during shear startup within two

models of soft glasses (a simple fluidity model and an adapted ‘‘soft glassy rheology’’ model). The degree

and duration of banding depends strongly on the applied shear rate, and on sample age before shearing.

In both models the ultimate steady flow state is homogeneous at all shear rates, consistent with the

underlying constitutive curve being monotonic. However, particularly in the soft glassy rheology case, the

transient bands can be extremely long lived. The banding instability is neither ‘‘purely viscous’’ nor

‘‘purely elastic’’ in origin, but is closely associated with stress overshoot in startup flow.
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Many soft materials show shear banding: the separation
into layers of different shear rate under imposed flow.
Examples include wormlike micelle solutions [1], granular
matter [2], star polymers [3], and ‘‘soft glasses’’ such as
gels, pastes, and emulsions [4]. Because shear banding
dramatically alters the stress response at fixed shear rate
or vice versa, it is central to the rheological control of such
materials, whose applications range from foodstuffs and
pharmaceuticals to paints and well-bore fluids. For mate-
rials that are nonergodic at rest, unexpected complexity can
arise when one band is not flowing and thus subject to
aging [3–6], while the other is continuously rejuvenated
by flow [7]. This interplay between glassy dynamics and
shear banding brings together two major current areas of
nonequilibrium physics research.

A steady mean shear rate is imposed by choosing time-
independent wall velocities in a rheometric device. In
most reported cases, the resulting shear bands then persist
indefinitely [3–5,8–12]. In many instances, shear banding
is attributable to a nonmonotonic steady-state constitutive
curve�ð _�Þ, where� is the shear stress and _� the shear rate
in the homogeneous material; regions with d�=d _� < 0 are
mechanically unstable [1]. This is analogous to, but dis-
tinct from, a similar instability in nonlinear elastic solids,
where mechanical instability likewise arises if the stress is
a decreasing function of strain (d�=d� < 0); see [13]. For
simplicity we refer to these as ‘‘viscous’’ and ‘‘elastic’’
banding scenarios, respectively.

In this Letter we use the case of soft glasses to explore
theoretically a distinctive, third scenario. This is where
shear banding arises on startup of steady shearing, before
eventually relaxing to an unbanded steady state. The re-
sulting transient bands can be extremely long lived and so
might well be mistaken for true steady-state ones (see, e.g.,
[14]). We show that such bands can arise in systems
showing neither a viscous nor an elastic instability, such
as a model combining essentially linear elasticity with a
near-trivial constitutive curve, �ð _�Þ ¼ Aþ B _�. Our

results may thus prove highly relevant (alongside other
factors [15,16]) to a number of cases where apparently
steady shear banding is seen, even though the constitutive
curve is predicted, by well founded theories, to remain
monotonic [16–18]. They are also relevant to recent experi-
ments where long-lived transient shear bands are directly
reported [19].
We argue that transient banding behavior can arise

generically in systems where the stress response �ðt; _�Þ
to startup of steady shear shows, as a function of time, a
significant overshoot before falling to the steady-state
limiting value �ð1; _�Þ � �ð _�Þ. Indeed, the simplest case
is where the overshoot is created purely by nonlinear
elasticity without relaxation or plastic flow. In this case,
�ðtÞ ¼ _�t is an elastic strain, so that any region where
@t�ðt; _�Þ< 0 implies the onset of the elastic instability
referred to already. In reality however, soft glasses (in
contrast to, e.g., elastomers [13]) have a very limited
elastic deformation regime before they yield irreversibly;
the stress maximum in such cases is the result of a contest
between the growth of elastic stress and its decay by plastic
rearrangement towards the eventual steady-state limit.
Accordingly, �ðtÞ is not an elastic strain within the region
where @t�< 0, and there can be no direct mapping onto
an elastic banding scenario.
Below we show that transient shear banding does none-

theless arise, whenever the stress overshoot becomes large,
both in a fluidity model of soft glasses (chosen for its
tractability), and in a mesoscopic model, adapted from
that of [20] which is known to capture well some subtler
physics of these systems. In soft glasses the overshoot can
be varied in height [without also varying �ð _�Þ] purely by
changing the age of the system [20], making such materials
ideal testing grounds for experiments and theory on tran-
sient banding. Emerging as it does from two independent
models, transient shear banding should be a generic feature
in the rheology of well-aged soft glasses—a fact not ap-
preciated previously. Moreover, stress overshoots often
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arise in other types of soft matter, and in many of these,
similar mechanisms may be at work.

Fluidity model.—Our first model is an empirical fluidity
model, along the lines of [21,22], in which a single struc-
tural relaxation time � regresses continuously towards a
steady-state value determined by the local shear rate. A
finite diffusivity for � is also introduced, so as to prevent
band interfaces from becoming infinitely sharp. This
model shows transient banding in the overshoot region,
with a strong dependence on system age, which sets the
initial value of � and thus the overshoot height. However,
the lifetime of the bands apparently remains modest, re-
gardless of the system age before shearing begins, in con-
trast to the adapted SGR model considered later.

To set up the fluidity model we decompose the total
shear stress � into a viscoelastic stress � arising from
the glassy degrees of freedom and a purely viscous part:
� ¼ �þ � _�. We assume translational invariance in the x
(flow) and z (vorticity) directions but allow nonuniformity
to develop in the flow gradient direction, y. Force balance
at zero Reynolds number (neglecting inertia) then requires
� to be independent of y. We suppose a Maxwell-type
constitutive equation for the viscoelastic stress

@t� ¼ G _�� �=�; (1)

where G is an elastic modulus and � is the structural
relaxation time (inverse fluidity) with its own dynamics:

@t� ¼ 1� �=~�ð _�Þ þ l20@
2
y�: (2)

In the absence of flow this represents simple aging (� ¼ t)
but with flow present, aging is cut off at the inverse strain
rate. (This is characteristic of strain-induced plasticity [7].)
Here l0 is a mesoscopic length (which could depend on _�
without affecting our presentation) describing the tendency
for the relaxation time of a mesoscopic region to equalize
with those of its neighbors.

We choose the steady-state relaxation time as ~� ¼ �0 þ
�=j _�j, so that in steady state � ¼ �þ � _� with � ¼
G _� ~� ¼ G�þG�0 _�, has a yield stress beyond which it
is trivially monotonic (a Bingham fluid). We consider
flow between infinite flat parallel plates at y ¼ 0, Ly, and

rescale strain, stress, time, and length so that � ¼ G ¼
�0 ¼ Ly ¼ 1. The steady-state constitutive curve is then

�ð _�Þ ¼ 1þ ð1þ �Þ _�; (3)

where for simplicity we now set � ¼ 0:05.
We study a shear startup protocol defined as follows.

First imagine preparing the sample by a deep quench at
time t ¼ 0, which we assume results in a fully rejuvenated
initial state with �ðy; t ¼ 0Þ ¼ 1, �ðy; t ¼ 0Þ ¼ 0 across
the whole sample. Next we allow the sample to age at rest
(so _� ¼ 1) until a time tw, before setting the upper plate
moving along x with constant speed _�Ly. This defines the

average imposed shear rate _� ¼ R
1
0 _�ðy; tÞdy.

Transient stress curves �ðt; _�Þ for shear startup in a
homogeneous system are shown for several different tw

in Fig. 1(a). There is an overshoot that depends strongly on
the age tw of the sample; one may show that it occurs
at a strain �o ¼ _�ðt� twÞ given by �o expð�oÞ ¼ _�tw. To
within a logarithmic correction this gives �o ¼ logð _�twÞ,
which we use for convenience below in preference to the
full implicit expression. The response of the sample prior
to (but not beyond) the stress maximum is almost elastic,
so the peak stress obeys �o � �o.
To gain intuition for the consequences of the overshoot,

consider now a thought experiment in which one tracks this
homogeneous stress transient for several identical sample
replicas, each subject to a different shear rate. At any fixed
time interval t� tw this defines an ‘‘instantaneous constit-

utive curve’’ ~�ð _�Þ, with the tilde denoting a dependence on
t� tw and tw, suppressed for clarity of notation. As shown
in Fig. 2(a), each such curve is nonmonotonic over a
typical shear-rate window _� < �0=ðt� twÞ, with monoto-
nicity being restored at higher shear rates. This can be
understood as follows. At any fixed time interval t� tw,
those replicas at high shear rate _�ðt� twÞ> �0 are ex-
pected to have reached steady state, with stresses obeying
the constitutive curve, Eq. (3). In contrast those for which
_�ðt� twÞ<�0 will still be on the elastic branch of the
stress transient, with a stress � ¼ _�ðt� twÞ � �ð _�Þ. With
this transient nonmonotonicity in mind, we performed an
instantaneous linear stability analysis about the evolving
homogeneous flow, determining for each t� tw an instan-
taneous eigenvalue whose positivity indicates instability to
the onset of banding. The unstable windows are shown by
dashed lines in Fig. 1(a), and correspond broadly to the

regions of negative slope in ~�ð _�Þ. However, they do not
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FIG. 1 (color online). (a) Homogeneous startup transient in
fluidity model at applied shear rate _� ¼ 0:1 for waiting times
tw ¼ 100, 102, 104, 106, 108 (tw increasing with increasing size
of overshoot) showing stable region (solid), unstable (dashed).
Dotted curve: actual startup curve arising from inhomogeneous
flow with l0 ¼ 0:01 and � ¼ 0:01. (b) Counterpart in modified
SGR model for x ¼ 0:3, _� ¼ 0:1, w ¼ 0:05, n ¼ 50, m ¼ 300,
and waiting times tw ¼ 100, 102, 104, 106. Solid lines: banding
disallowed. Dotted: banding allowed. Inset: approach to steady
state at later times in the banding case. Note that our strain
variable is rescaled; in practice we expect strains Oð1Þ at peak.
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do so exactly; this cannot be viewed solely as a viscous
instability of the instantaneous constitutive curve. Nor does
the window exactly correspond to that of negative slope in
�ðt; _�Þ, as it would for an elastic instability. Although
clearly associated with a large stress overshoot, the band-
ing scenario found here is thus distinct from either the
viscous or the elastic one—a view reinforced by the line-
arity of the step strain response in (1), and the trivial
monotonicity in (3), for the underlying model.

We now turn to study the full heterogeneous dynamics of
the model in this shear startup protocol, allowing spatial
variations in the flow gradient direction y. In each run we
add a small perturbation �ðy; t ¼ 0Þ ¼ � cosð�yÞ where
� � 1, in order to trigger any banding. In each run we
tracked, as a function of shearing time t� tw, the degree of
shear banding in the sample, as measured at any instant
by the difference _�max � _�min between the maximum
and minimum shear rates present in the cell, as shown in
Fig. 2(b) for several different waiting times tw. Regions of
high _�max � _�min broadly match up with the regions of
negative slope in Fig. 2(a), consistent with the idea that this
instability in the instantaneous constitutive curve indeed
triggers banding. Likewise in Fig. 2(c) we delineate the
temporal windows, for various tw and as a function of shear
rate _�, within which banding is significant, as defined by a
criterion ð _�max � _�minÞ= _� > 0:01. The shear stress that
arises in these transiently banded flows is of course differ-
ent from the predictions of the homogeneous model; both

are shown in Fig. 1(a), as a function of t� tw, at a fixed
shear rate _� ¼ 0:1 for various waiting times. Snapshots of
the transient bands for one particular startup are shown in
Fig. 2(d). Note that the minimum shear rate, which arises
within the low-shear-rate band, can be negative during
transient banding. This is because the low-shear-rate
band is well aged, has been subjected only to a weak
flow, and therefore remains essentially an elastic slab.
However the stress � on this slab decreases post-
overshoot: like any elastic solid being unloaded, it shears
backwards.
Adapted SGR model.—Our second model is a spatially

resolved adaptation of the SGR model [6,20] in which a
spectrum of jump rates describes hopping over strain-
modulated local rearrangement barriers at an effective
noise temperature x ¼ T=Tg; elastic strain builds up and

then is released in these plastic jump events. Following
Ref. [6], where full details can be found, numerically we
take j ¼ 1 . . .m SGR elements on each of i ¼ 1 . . . n
streamlines, corresponding to y ¼ 0 . . . 1, with periodic
boundary conditions. The stress on streamline i is �i ¼
ðk=mÞPj‘ij, with elastic constant k ¼ 1. A waiting time

Monte Carlo algorithm is used to choose stochastically the
next element to jump. Supposing the jump occurs at ele-
ment ij when its local strain is ‘ ¼ l, force balance is then
imposed by updating all elements on the same streamline
as ‘ ! ‘þ l=m, and further updating all elements
throughout the system as ‘ ! ‘� l=mn. In contrast to
Ref. [6], here we take the noise temperature x as constant,
but include instead a stochastic jump-induced straining
of elements on neighboring streamlines after each jump
event: further adjusting the strain of three randomly
chosen elements on each adjacent streamline i� 1 by
lwð�1;þ2;�1Þ. This creates a diffusive coupling of the
dynamics on different streamlines (different y), analogous
to that in Eq. (2), with a strength set by w. It also mildly
alters the constitutive curve from that of pure SGR, without
losing monotonicity.
The evolution of stress with time in startup flow is shown

in Fig. 1(b), both for the case where homogeneous flow is
imposed (solid lines), and for the full dynamics allowing
banding (dotted lines). The trends are quite similar to those
from the scalar model: for older samples, the dotted line
departs from the solid one just after the overshoot. The
initial effect of transient banding, as before, is always to
decrease the stress to values below that of the homoge-
neous system at the same time point.
There is however a new feature in the SGR model,

not seen in the fluidity model. For the oldest samples
(tw � 106, measured in units of the microscopic attempt
rate for jumps) the time scale for the stress signal to decay
to the limiting value (corresponding to homogeneous flow)
is inordinately long: indeed, this decay can require strains
_�t of order thousands, as opposed to the order-unity values
seen in the fluidity model. Since strain rejuvenates the
material, this is possible only because, for very old
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FIG. 2 (color online). (a) For chosen tw ¼ 106, plots of the
instantaneous homogeneous constitutive curves during start up
for t� tw ¼ 40, 80, 120, 160, 200 with regions of instability
dashed. (b) Strength of banding ( _�max � _�min) against t� tw for
_� ¼ 0:1, and tw ¼ 104, 106, 108. (c) For the same _� ¼ 0:1, and
tw ¼ 104 (solid), 106 (dotted), 108 (dashed), plots in the t� tw,
_� plane showing the upper (thick lines) and lower (thin lines)
boundary curves of the window in which banding is significant
(threshold set by ð _�max � _�minÞ= _� > 0:01). (d) Snapshots of
banded profiles for _� ¼ 0:1, tw ¼ 106, and t� tw ¼ 5, 120,
130, 135, 225 showing onset, development and eventual collapse
of the bands. l0 ¼ 0:01, � ¼ 0:01 in (b)–(d).
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samples, the strain rate in the low-shear band remains
extremely small compared to _�. This behavior, clearly
visible in Fig. 3, is consistent with having an age-
dependent static yield stress that can lie well above the
homogeneous steady-state stress �ð _�Þ. In principle the
banded state might then persist indefinitely, but in our
model the low-shear band seemingly is eroded slowly by
the spreading of the fast band, perhaps as a result of the
diffusive nonlocality in the jump dynamics.

Discussion.—Aside from its longer-lived transients, the
adapted SGR model shows broadly similar phenomenol-
ogy to the fluidity model, supporting our contention that
the transient shear-banding scenario reported here is ge-
neric for soft glasses. As previously stated, the soft glass
case is one where the stress overshoot stems from a com-
petition between (essentially linear) elasticity and plastic
relaxation: there is no facile mapping onto either an elastic
instability (d�=d� < 0) or a viscous one (d�=d _� < 0).
Despite the intermediate character of the instability to-
wards transient bands, we showed for the fluidity model
that their onset is closely correlated with the occurrence a
negative slope on the instantaneous stress versus strain rate
curve (@�=@ _�jt < 0). However, linearization about the
time-dependent solution for a homogeneous flow showed
this to be a qualitative rather than an exact correspondence.

The scenario of transient bands we have developed for
soft glasses may interact in a complicated manner with
various mechanisms previously presented to explain
steady-state shear bands in the same class of materials
[6,16]. However, in some cases bands of long but finite
duration were already observed in startup flows [19] and
the physics we have explored in this letter may be enough,
on its own, to explain some of these. Even if not, the
presence of a generic connection between transient band-
ing and stress overshoots should not be overlooked in
future work on these materials.

Stress overshoots in startup flows are often also seen in
other classes of viscoelastic soft matter at high enough

shear rates, including nonaging systems such as entangled
polymers. Indeed, some studies of polymeric materials and
models have started to explore the connection between this
and transient banding [17,18]. Nonetheless, we hope that
further experimental and theoretical work on soft glasses
will help elucidate this connection in more general terms.
Arguably these represent ideal materials with which to
explore the problem, because the size of the overshoot
can be varied without any change to the final steady state
of the system. In all systems both the final state and the
overshoot depend on the imposed flow rate and on sample
composition, temperature etc., but in glasses one can also
vary the system age tw which affects only the overshoot,
and not the steady state.
We thank Tom McLeish, Ron Larson, Peter Olmsted,

and Rut Besseling for discussions. Work funded in part by
EPSRC EP/E5336X/2 and EP/E030173. M. E. C. is funded
by the Royal Society.

[1] M. E. Cates and S.M. Fielding, Adv. Phys. 55, 799 (2006);
P. D. Olmsted, Rheol. Acta 47, 283 (2008).

[2] H.M. Jaeger S. R. Nagel, and R. P. Behringer, Rev. Mod.
Phys. 68, 1259 (1996); D. Fenistein and M. van Hecke,
Nature (London) 425, 256 (2003).

[3] S. A. Rogers D. Vlsassopoulos, and P. T. Callaghan, Phys.
Rev. Lett. 100, 128304 (2008).

[4] G. Ovarlez et al., Rheol. Acta 48, 831 (2009); P. Coussot
et al., J. Rheol. 46, 573 (2002).

[5] P. Coussot et al., Phys. Rev. Lett. 88, 218301 (2002).
[6] S.M. Fielding, M. E. Cates, and P. Sollich, Soft Matter 5,

2378 (2009).
[7] J.M. Brader et al., Proc. Natl. Acad. Sci. U.S.A. 106,

15 186 (2009); Phys. Rev. Lett. 101, 138301 (2008); M.
Fuchs and M.E. Cates, Phys. Rev. Lett. 89, 248304 (2002).

[8] P. Moller et al., Phys. Rev. E 77, 041507 (2008).
[9] J. Goyon et al., Nature (London) 454, 84 (2008).
[10] J. J. Gibaud, C. Barentin, and S. Manneville, Phys. Rev.

Lett. 101, 258302 (2008).
[11] L. Isa, R. Besseling, and W.C.K. Poon, Phys. Rev. Lett.

98, 198305 (2007).
[12] F. Varnik et al., Phys. Rev. Lett. 90, 095702 (2003).
[13] G. Marrucci and N. Grizzuti, J. Rheol. 27, 433 (1983).
[14] Y. T. Hu, J. Rheol. 54, 1307 (2010).
[15] S.M. Fielding and P.D. Olmsted, Eur. Phys. J. E 11, 65

(2003); M. E. Helgeson et al., Phys. Rev. Lett. 105,
084501 (2010).

[16] R. Besseling et al., Phys. Rev. Lett. in review.
[17] P. Tapadia and S. Q. Wang, Phys. Rev. Lett. 91, 198301

(2003); 96, 016001 (2006); Y. T. Hu et al., J. Rheol. 51,
275 (2007).

[18] J.M. Adams and P.D. Olmsted, Phys. Rev. Lett. 102,
067801 (2009).

[19] T. Divoux et al., Phys. Rev. Lett. 104, 208301 (2010).
[20] S.M. Fielding et al., J. Rheol. 44, 323 (2000); P. Sollich

et al., Phys. Rev. Lett. 78, 2020 (1997).
[21] G. Picard et al., Phys. Rev. E 66, 051501 (2002).
[22] P. Coussot et al., Phys. Rev. Lett. 88, 175501 (2002).

0 0.2 0.4 0.6 0.8 1
y

0

0.05

0.1

0.15

0.2

0.25

γ.

FIG. 3. Shear-rate profiles corresponding to slowly decaying
stress signal at tw ¼ 106 in Fig. 1(b) averaged over time win-
dows 250–500; 500–1000; 1000–1500; 1500–2000; 2000–2500;
2500–3000 (top to bottom at y ¼ 0:5).

PRL 106, 055502 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

4 FEBRUARY 2011

055502-4

http://dx.doi.org/10.1080/00018730601082029
http://dx.doi.org/10.1007/s00397-008-0260-9
http://dx.doi.org/10.1103/RevModPhys.68.1259
http://dx.doi.org/10.1103/RevModPhys.68.1259
http://dx.doi.org/10.1038/425256a
http://dx.doi.org/10.1103/PhysRevLett.100.128304
http://dx.doi.org/10.1103/PhysRevLett.100.128304
http://dx.doi.org/10.1007/s00397-008-0344-6
http://dx.doi.org/10.1122/1.1459447
http://dx.doi.org/10.1103/PhysRevLett.88.218301
http://dx.doi.org/10.1039/b812394m
http://dx.doi.org/10.1039/b812394m
http://dx.doi.org/10.1073/pnas.0905330106
http://dx.doi.org/10.1073/pnas.0905330106
http://dx.doi.org/10.1103/PhysRevLett.101.138301
http://dx.doi.org/10.1103/PhysRevLett.89.248304
http://dx.doi.org/10.1103/PhysRevE.77.041507
http://dx.doi.org/10.1038/nature07026
http://dx.doi.org/10.1103/PhysRevLett.101.258302
http://dx.doi.org/10.1103/PhysRevLett.101.258302
http://dx.doi.org/10.1103/PhysRevLett.98.198305
http://dx.doi.org/10.1103/PhysRevLett.98.198305
http://dx.doi.org/10.1103/PhysRevLett.90.095702
http://dx.doi.org/10.1122/1.549715
http://dx.doi.org/10.1122/1.3494134
http://dx.doi.org/10.1140/epje/i2002-10128-7
http://dx.doi.org/10.1140/epje/i2002-10128-7
http://dx.doi.org/10.1103/PhysRevLett.105.084501
http://dx.doi.org/10.1103/PhysRevLett.105.084501
http://dx.doi.org/10.1103/PhysRevLett.91.198301
http://dx.doi.org/10.1103/PhysRevLett.91.198301
http://dx.doi.org/10.1103/PhysRevLett.96.016001
http://dx.doi.org/10.1122/1.2433701
http://dx.doi.org/10.1122/1.2433701
http://dx.doi.org/10.1103/PhysRevLett.102.067801
http://dx.doi.org/10.1103/PhysRevLett.102.067801
http://dx.doi.org/10.1103/PhysRevLett.104.208301
http://dx.doi.org/10.1122/1.551088
http://dx.doi.org/10.1103/PhysRevLett.78.2020
http://dx.doi.org/10.1103/PhysRevE.66.051501
http://dx.doi.org/10.1103/PhysRevLett.88.175501

