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Pendulum in a Fermi Liquid
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The Fermi-liquid theory formulated by Landau is a basic paradigm of the behavior of an interacting
many-body system. We present a new application of this theory to calculate the “Landau force” on a
macroscopic object. We show that immersing a pendulum in a Fermi liquid can increase its oscillation
frequency, and evidence of this has been observed in mixtures of He and “He.
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The pendulum is one of the simplest but also most
precise physical instruments. For accurate measurements,
one needs to understand the effect of the medium, often air,
on the oscillation. The first effect perceived was to correct
the gravitational restoring force by the buoyancy of the
oscillating body. The second effect, calculated by Poisson
in 1831, was that the flow of the medium around the body
increases the inertia of the pendulum. The third correction,
calculated by Stokes in 1850, was the effect of the viscosity
of the medium [1]. With these corrections, the pendulum in
fact turns out to be a device, a viscometer, to measure the
properties of the medium. Further corrections are needed in
ararified gas, where the mean free path of the gas particles
becomes comparable or exceeds the size of the pendulum
[2]. In this Letter we continue this line of corrections by
considering a pendulum in Fermi liquid. We show that the
Fermi liquid acts like an elastic medium, which can in-
crease the restoring force and thus lead to increased fre-
quency of oscillation. We show that this effect is important
in explaining oscillator experiments made in liquid mix-
tures of He and “He [3]. Moreover, this fermion-boson
mixture allows a deep insight into the Fermi-liquid theory.

The Fermi-liquid theory is a paradigm of what can
happen in a strongly interacting many-particle system
[4-7]. Instead of strongly interacting particles, the energy
spectrum has low-energy excitations called quasiparticles,
which interact only weakly. Originally Landau formulated
the Fermi-liquid theory for liquid *He [4], but the principle
has much wider application, an important example being
the conduction electrons in metals. The generalization of
Fermi-liquid theory forms the basis to understand the
superconductivity of many materials and the superfluidity
in fermion systems. Even when it is not valid, it forms the
standard against which to compare more sophisticated
theories [7,8].

In the original realm of *He, the Fermi-liquid theory was
applied to explain many properties of the bulk, in particu-
lar, thermodynamics, collective modes, and transport prop-
erties [5,6]. Soon the theory was applied to a liquid limited
by an oscillating planar wall [9,10]. This problem still
had an analytic solution although it is very complicated,
and therefore also approximate methods are useful [11].
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The approaches to nonplanar geometries have been pertur-
bative. As the Fermi-liquid theory reduces to the hydro-
dynamic theory in the limit of small mean free path, the
leading corrections appear in the boundary conditions.
This leads to a modified boundary condition where the
fluid velocity is assumed to extrapolate to the wall velocity
ata “slip length” behind the wall [12—14]. In this Letter we
calculate the response of the Fermi liquid to a vibrating
body in the full range of mean free paths from the hydro-
dynamic to the ballistic limit. The calculation necessarily
is numeric. With a view to apply the calculation to mea-
surements using vibrating wires, we specifically consider
a circular cylinder oscillating transverse to its axis. We
also use the Fermi-liquid theory adapted to the simulta-
neous presence of bosonic superfluid, as formulated by
Khalatnikov [15]. Besides being applicable to mixtures
of 3He and “He, this has the advantage that some basic
properties of the Fermi-liquid theory are more easily
visible [16].

A noninteracting Fermi system has plane-wave states
with momenta p and energy €, = p?/2m where m is the
mass of a fermion. The ground state of the system consists
of a Fermi sphere with all states p < py filled and others
empty. The basic assumption of Landau was that the
energy spectrum of the interacting Fermi system has one-
to-one correspondence with the noninteracting system. In
particular, the momenta p of the quasiparticles are the
same as for noninteracting particles, but the energies are
shifted. Near the Fermi surface one writes the energy as
linear in momentum, €, = v(p — pp) where the parame-
ter vy = pp/m* defines the effective mass m*. Using the
group-velocity argument to the dispersion relation €, gives
that the excitation propagates with velocity v whose mag-
nitude equals the Fermi velocity vy. Thus the momentum
of the principal fermion muv differs from the momentum
p of the excitation. In Fermi-liquid theory this missing
momentum is parametrized so that fraction D = 1—
(1 +4F)m/m* of the total momentum p is carried by
the bosons and fraction mF; /3m* by other fermions. This
can be interpreted that the principal fermion pushes with it
a cloud of both bosons and other fermions. Here the bosons
are assumed to be fully condensed and are described by
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density pg, chemical potential up and superfluid velocity
v,. The special case without bosons is obtained by setting
pB = D = O.

A crucial observation of Landau was that the dispersion
relation assumed above leads to a consistent theory only
if one allows an interaction between the quasiparticles.
This modifies the quasiparticle energy to €, =
vp(p — pr) + 8€; with the correction [15]

dep(r,t) = (1 + a)Sug(r, 1) + Dppp - vy(r, 1)

+ Y FAPi(p - Py (r, 1)y, (1)
=0

which depends on location r and time ¢. Close to the Fermi
surface, d€; depends on momentum only through its di-
rection p = p/p. The first term in Eq. (1) is the energy
shift, parametrized by «, caused by nonequilibrium boson
chemical potential, dug = ug — ,ug)) , where the super-
script (0) denotes the equilibrium value. The second term
is the energy shift due to motion of the boson part with
velocity vy. In the last term, ¢ is the quasiparticle distri-
bution function n,, integrated over momentum magnitude,

dp = [n,p — nﬁ,o)]dep. It can be interpreted as the non-
equilibrium shift of the Fermi surface. The functions
Py(x) = 1, P;(x) = x, etc., are the Legendre polynomials
and (...); is the average over the Fermi surface. The terms
with coefficients Fy and F are analogous to the 1 + « and
D terms but correspond to the fermion background. The
higher order terms with / > 1 extend the leading two terms
to general deformations of the Fermi surface.

In order to determine the dynamics, one needs a kinetic
equation. For small deviations from equilibrium it takes
the form

aaitﬁ +upp Vg, + bep) = I, @)

where [ is the collision term. We see that this equation is
a first order differential equation along classical particle
trajectories, which are straight lines in the momentum
direction p. The momentum conservation allows us to
determine the stress tensor and thus the force on macro-
scopic objects [15,16].

In order to see how the elasticity of the liquid arises, let
us consider a beam of quasiparticles, as depicted in Fig. 1.
For example, ¢;(r) = A(r X p,)8(p, p,) with an ampli-
tude function A and a 6 function defined on a unit sphere.
On a trajectory crossing the beam, the beam causes a
potential &€, which shifts all quasiparticle energies
[Fig. 1(b)]. As in equilibrium the states are filled up to
the Fermi level, the potential is compensated by a change
of the particle density on the crossing trajectory. Therefore,
the dynamics on the crossing trajectory, which is deter-
mined by quasiparticles at energies close to the Fermi
level, is not essentially affected by a stationary beam.
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FIG. 1 (color online). Ilustration of quasiparticle dynamics on
a trajectory crossing a beam of quasiparticles. (a) The quasipar-
ticle trajectory (with parameter s) and the beam depicted in r
space. (b) The quasiparticle dispersion relations €, at three
locations on the quasiparticle trajectory crossing the beam. For
a stationary 8¢, the quasiparticles travel at constant energy and
are not essentially affected by the beam. (c) A temporal variation
of the potential (€, # 0) leads to energy shift of quasiparticles.

Let us now consider that the amplitude of the beam is
changing. The changing of the potential stores or releases
quasiparticles on the crossing trajectory. Thus a varying
quasiparticle beam radiates quasiparticles in all directions
even in the absence of any collisions (/ = 0). In the case of
a pendulum, the body moving with velocity u generates a
beam that at large distances |r| is in the radial direction,
P, = F, and the amplitude A o« u - 7. Typically the F, term
is the dominant interaction term in (1) and thus the poten-
tial d€j o« Fou - F. The quasiparticles radiated back on
the body are proportional to 6éj * Fou - F, where the dot
denotes time derivative. This results in an extra ‘“‘Landau
force” F « Fyu the body has to exert on the liquid. A force
of the form F = Mu is well known in hydrodynamic flow,
and M can be interpreted as the mass of the fluid that is
dragged with the body. The difference in the present case is
that Fy can be negative. Rather than thinking of a negative
mass, a simpler interpretation is that the fluid has elasticity
leading to an increased restoring force and increased
oscillation frequency of the pendulum.

In pure *He the parameter F, is positive. The Landau
force leads to increased effective mass of any objects,
including ions [17], aerogel [18], and deformations of the
surface of the liquid [19], which effect has not been ex-
plored yet. The case of negative F, is realized in mixtures
of He and “He. Below we calculate in detail the case of a
circular cylinder oscillating transverse to its axis.

The system of Egs. (1) and (2) was solved numerically
for ¢ (r) on a grid surrounding an oscillating cylinder, see
below for more details. The relaxation-time 7 was used
to approximate the collision term [6,16]. The force F by
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which the cylinder drives the liquid is conveniently ex-
pressed by mechanical impedance Z = Z' + iZ" defined
by F = Zu, where we assume time dependence
exp(—iwt). The dissipative Z' and the reactive Z" are
plotted in Fig. 2 as a function of the mean free path
{ = vp7. Two cases are shown by solid lines: a cylinder
of radius a in a large chamber and in a slab of thickness
16a. We see that the confinement has a strong effect
especially on Z".

In the limit € — 0, the viscosity can be neglected and the
liquid behaves like an ideal fluid. This corresponds to pure
reactance, Zigey = —ima’pwG. Here p is the liquid den-
sity and G — 1 = O(a/b)? is a small correction caused by
a finite chamber dimension b. In the experimental case [3]
Zl\i/anppr = —0.50. With increasing € the viscosity of
the liquid becomes important. This leads to increasing
dissipation and the effective mass M = —Z"/w grows
because the increasing viscosity causes more liquid to be
dragged by the oscillating cylinder. The hydrodynamic
description becomes insufficient when ¢ approaches a.
Compared to the hydrodynamic theory (dotted lines), the
dissipation grows less rapidly and the fluid mass coupled
to the oscillator starts to decrease. In the ballistic regime
€ > a the impedance saturates to a value independent of €.

The fact that Z” in the ballistic limit exceeds its ideal-
fluid value in the limit € — O can be analyzed as follows.
(1) The fermion component of the fluid decouples from the
ideal-fluid flow corresponding to contribution mnp to be
subtracted from p in Z,.,. (Here ny the fermion number
density.) (2) As discussed above, part of the bosons are
bound to fermion quasiparticles, and therefore the density
Dm*np/(1 + %F 1) has to be subtracted from p. These two
contributions together constitute what is known as
the “normal fluid density” p, = m*ng/(1 +1F)).
(3) The Landau force, the main contribution coming
from the negative Fj,. (4) In a finite geometry, there is an
effect caused by quasiparticles reflected from the chamber
wall back to the oscillating body. All these effects are
shown separately in Fig. 2. We see that the four effects
are all in the same direction, and have similar orders of
magnitude.

Figure 2(c) gives a comparison of the theory to experi-
ments [3]. Experimentally the mean free path was
controlled by temperature, the lowest temperatures ap-
proaching the ballistic limit. We see that the confinement
is crucial in order to achieve agreement. The essential point
in the data is that the frequency shift of the oscillator in the
low temperature limit is positive and clearly larger than the
normal fluid contribution (contributions 1 and 2 together).
This indicates the importance of the contributions of
Fermi-liquid interactions and confinement, although their
individual contributions cannot be separated.

In the calculation, the parameters of the slab chamber
and the oscillating cylinder are fixed by the experiment.
The Fermi-liquid parameters m* = 2.46, F, = —0.28, and
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FIG. 2 (color online). The force F = Zu exerted by an oscil-
lating cylinder (radius a, velocity u) on the surrounding Fermi-
Bose liquid as a function of the mean free path €. (a) The real
part Z' and (b) the imaginary part Z” of the mechanical imped-
ance Z. The main results are shown by blue (or dark) solid lines.
They correspond to diffusive boundary conditions in a slab
chamber, which has two plane walls at x = *8a and the cylinder
in the middle oscillating in the x direction. Other lines differ
from the main ones in the following respects: (green or gray solid
lines) a large chamber, (dotted lines) hydrodynamic approxima-
tion in a large chamber [1], (dashed lines) 50% specular scat-
tering at the oscillating cylinder, and (dash-dotted lines)
quasiparticle-absorbing chamber walls. Four different contribu-
tions to the ballistic limit of the blue curve are indicated (see
text). (¢) Plot of Z' vs Z" showing the same results as above and
experimental data (data points) from Ref. [3] at 5.6% 3He
concentration. The large chamber is a coaxial cylinder of radius
b = 80a with absorbing walls.

F, = 0.155 are based on measurements of specific heat
and second sound velocity as analyzed by Corruccini [20].
The higher Landau parameters F; with [ > 1 were assumed
to vanish. The boundary condition corresponding to diffuse
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scattering of quasiparticles [9] was used on all surfaces for
the blue solid lines in Fig. 2. Thus no fitting parameters
were used.

In more detailed comparison, one can allow for partial
specularity of the quasiparticle scattering from the surface
of the oscillating cylinder [14]. Also, the walls of the
experimental chamber are rough sinter, where part of
the quasiparticles likely is absorbed rather than scattered.
The effect of these modifications is indicated by dashed
and dash-dotted lines in Fig. 2. A full comparison with the
experiments [3] is presented in Ref. [21].

A Fermi liquid can support a collisionless propagating
mode, known as zero sound. It arises from the same
physics as the Landau force discussed here. Using terms
of antenna theory, the Landau force could be interpreted as
the near field effect and zero sound as the far field effect of
the Fermi-liquid interactions. Zero sound occurs for repul-
sive interactions (assuming F|, is the dominant interaction
parameter). The elasticity effect, where M <0, occurs
for attractive interactions, where zero sound is damped.

In the ballistic limit, the Landau force can be calculated
by low-frequency expansion of Egs. (1) and (2). The
result is

C,F

— 2 0% 141

= — 27 3
amnFa)lol ()

ZI/
1
20+1 F

Landau

The coefficients C; ~ 1 are expressed in terms of compli-
cated integrals. The dissipative part Z’ in the ballistic limit
has been studied in Refs. [13,22].

Before numerical calculation we made a transformation
that uncouples the Fermi and Bose parts in the low-
frequency regime [16], which is a good approximation
since wa /vy = 0.017. For this a new distribution function
=+ 8€; + Dm*Sup/mp(1 +1F;) was defined.
A two dimensional grid was constructed around the cylin-
der. On each grid point was stored the “‘old” values of the
angular averages (¥ 5); and (P ;),, which appear in (1)
andinl = —(¢, —(p)y — Xp - P'¥p)p)/7 (2). Then
the kinetic equation was solved for i ,(r) at a given
frequency w by integrating along the classical trajectories,
taking into account boundary conditions [9,16]. For that
the values of the angular averages had to be interpolated
between the grid points. By repeating this for a number
of trajectories passing trough a given grid point, “new”
values of the averages could be calculated by numerical
angular integration. This was repeated for each grid point.
Because of linearity of the equations, the new values of the
angular averages are obtained as linear combination of the
old ones. An inhomogeneous term appears in this relation
because of the boundary conditions at the oscillating cyl-
inder. A self-consistent solution was obtained by requiring
the new values to be the same as the old ones. This matrix
equation was solved by numerical matrix inversion.

In conclusion, we have shown that the force of a macro-
scopic object on a Fermi liquid has a contribution from the
interactions, caused, in particular, by F,. With a numerical
solution of the Fermi-liquid equations in proper geometry
we find good agreement with measurements in *He-*He
mixtures.
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