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We present a natural framework for studying the persistence problem in two-dimensional fluid

turbulence by using the Okubo-Weiss parameter � to distinguish between vortical and extensional

regions. We then use a direct numerical simulation of the two-dimensional, incompressible Navier-

Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence

times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We

find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for

Lagrangian particles, in vortical regions, has a power-law tail with an exponent � ¼ 2:9� 0:2.

DOI: 10.1103/PhysRevLett.106.054501 PACS numbers: 47.27.�i, 05.40.�a

The persistence problem, which is of central importance
in nonequilibrium statistical mechanics [1], is defined as
follows: for a fluctuating field �, the persistence-time
probability distribution function (PDF) P�ð�Þ yields the
probability that the sign of � at a point in space does not
change up to a time �. Theoretical, experimental, and
numerical studies of a variety of systems, ranging from
reaction-diffusion systems to granular media, have shown
that P�ð�Þ � ��� as � ! 1, where � is the persistence
exponent. This nontrivial exponent cannot be obtained
from dimensional arguments; it can be calculated analyti-
cally only for a few models [2]; for most models it has to be
obtained numerically. We propose a natural way of defin-
ing the persistence problem in two-dimensional turbu-
lence. We then show how to obtain the persistence
exponent for this case.

Turbulent flows in two-dimensional fluid films display
vortical points and strain-dominated or extensional points.
We show how to examine the persistence of such points in
time by direct numerical simulations (DNSs) of the forced,
two-dimensional, incompressible Navier-Stokes equation.
Our study has been designed with thin-fluid-film experi-
ments in mind [3,4] so we account for an air-drag-induced
Ekman friction and we drive the fluid by using a
Kolmogorov forcing. We demonstrate that the Okubo-
Weiss parameter [5,6] �, whose sign at a given point
determines whether the flow there is vortical or exten-
sional, provides us with a natural way of studying such
persistence.

It is important to distinguish the following types of
persistence times: (A) In the Eulerian framework we con-
sider a point (x, y) and, by following the time evolution of
�, determine the time � for which the flow at this point
remains vortical (extensional) if the flow at this point
became vortical (extensional) at some earlier time; (B) in

the Lagrangian framework we consider how long a
Lagrangian particle resides in a vortical (extensional) re-
gion if this particle entered that vortical (extensional)
region at an earlier time. For all these cases we obtain
PDFs of the persistence or residence times that we denote
generically by �. We find, in the Eulerian framework, that
the PDFs of � show exponential tails in both vortical and
extensional regions. In the Lagrangian framework the PDF
of the residence time of the particle in extensional regions
also shows an exponential tail; the analogous PDF for
vortical regions shows a power-law tail. The persistence
exponent that characterizes this power law is independent
of parameters such as the Reynolds number, the character-
istic scale of the forcing, and the coefficient of Ekman
friction, at least at the level of our numerical studies.
We perform a direct numerical simulation of the incom-

pressible, two-dimensional, Navier-Stokes equation

@t!� Jðc ; !Þ ¼ �r2!þ f! ��!; (1)

with periodic boundary conditions, by using a pseudospec-
tral method [7] with N2 collocation points and the 2=3
dealiasing rule. Here c is the stream function, ! the
vorticity, Jðc ; !Þ � ð@xc Þð@y!Þ � ð@x!Þð@yc Þ, � the

kinematic viscosity, and � the coefficient of Ekman fric-
tion. At the point (x, y) the velocity u � ð�@yc ; @xc Þ and
the vorticity ! ¼ r2c ; the external deterministic force
f!ðx; yÞ ¼ �F0kinj cosðkinjxÞ, where F0 is an amplitude

and kinj the energy-injection scale in Fourier space. The

injected energy displays an inverse cascade to small k.
Ekman friction removes energy from all Fourier modes;
in particular, it removes energy from small-k Fourier
modes in such a way that the system reaches a nonequi-
librium statistically steady state. We evolve Eq. (1) in time
by a second-order, exponential Runge-Kutta method [8]. In
all our simulations we wait for a time Ttran (see the caption
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of Table I) to allow transients to die out so that our system
reaches a statistically steady state. Figure 1 shows a typical
pseudocolor plot of c in such a state.

To calculate Lagrangian quantities we track Np parti-

cles. The evolution equation for a Lagrangian particle is
d
dtxLðtÞ ¼ uðxL; tÞ, where xLðtÞ is the position of a

Lagrangian particle at time t; uðxL; tÞ, the velocity at the
Lagrangian particle position, is evaluated from the
Eulerian velocity field uðx; tÞ by using a bilinear-
interpolation scheme [9]. The evolution equation of the
particles is solved by a second-order, Runge-Kutta method
[9]. Initially all the particles are seeded randomly into the
flow. A typical Lagrangian-particle track superimposed on
a representative pseudocolor plot of c is shown in Fig. 1.
The list of parameters used in our simulations is given in
Table I.

From the velocity-gradient tensor A, with components
Aij � @iuj, we obtain the Okubo-Weiss parameter �, the

discriminant of the characteristic equation for A. If � is
positive (negative) then the flow is vortical (extensional)
[5]. In an incompressible flow in two dimensions � ¼
detA; and the PDF of � has been shown [4] to be asym-
metrical about � ¼ 0 (vortical regions are more likely to
occur than strain-dominated ones). For the Eulerian case,
we monitor the time evolution of� atNp randomly chosen

points that are fixed in the simulation domain. In our
Lagrangian study, we begin with the values of � on the
spatial grid that we use for our Eulerian DNS; bilinear
interpolation then yields � at the positions of Lagrangian
particles, which can be at points that do not lie on this grid;
we can thus monitor the evolution of � along Lagrangian-
particle trajectories.

We denote the persistence-time PDFs by P and the
associated cumulative PDFs by Q; the subscripts E and L
on these PDFs signify Eulerian and Lagrangian frames,
respectively; and the superscriptsþ or� distinguish PDFs
from vortical points from those from extensional ones.
To find out the persistence time PDF Pþ

E ð�Þ [P�
E ð�Þ] we

analyze the time series of � obtained from each of the Np

Eulerian points and construct the PDF of the time intervals
� over which � remains positive [negative]. The same
method applied to the time series of �, obtained from
each of the Np Lagrangian particles, yields Pþ

L ð�Þ [P�
L ð�Þ].

We use the rank-order method [10] to calculate cumu-
lative PDFs because they are free from binning errors. We
show representative plots of the cumulative PDFs Qþ

E (red
crosses), Q�

E (black open circles), and Q�
L (magenta full

circles) in Fig. 2(a); the dashed lines indicate exponential
fits to these cumulative PDFs. From these and similar fits
we conclude that the PDFs Pþ

E , P
�
E , and P

�
L have exponen-

tially decaying tails, for all the runs, from which we can
extract characteristic time scales. In particular, from the
Eulerian PDFs we obtain the times Tþ

E and T�
E , for vortical

and strain-dominated regions, respectively, which are de-
fined as follows: Pþ

E ð�Þ � expð��=Tþ
E Þ and P�

E ð�Þ �
expð��=T�

E Þ as � ! 1 (see Table I). The Lagrangian
PDF P�

L also has an exponentially decaying tails from
which we obtain the characteristic time T�

L (see Table I).
The persistence-time PDF Pþ

L and the associated cumu-
lative PDFQþ

L of a Lagrangian particle in a vortical region
is very different from those discussed above: the tails of Pþ

L

and Qþ
L have power-law, and not exponential, forms; we

show this in Fig. 2(b) via a representative plot Qþ
L for the

run R4. Thus, as in nonequilibrium statistical mechanics
[1], we can define the persistence exponent � via Pþ

L �
���. Our run R4 has the largest value of Re� among the
runs R1� 4 (Table I) and, therefore, is best suited for
estimating � from plots such as the one in Fig. 2(b).
We obtain the exponent (� �þ 1) by fitting a power law
to the tail of the cumulative PDF Qþ

L . To find the best
estimate for (� �þ 1) we evaluate the local slope � ¼
dlog10Q

þ
L ð�Þ=dlog10ð�Þ in the region shown in the inset of

Fig. 2(b). Our estimate for (� �þ 1) is the mean value of
� over the region indicated in the inset; the standard
deviation of � yields the error; finally we obtain � ¼ 2:9�
0:2. Our other runs R1� 3 yield smaller scaling ranges

TABLE I. Parameters for our runs R1� 4: N is the number of grid points along each direction, Np ¼ 1000 is the number of
Lagrangian particles and Eulerian positions (at which we monitor �), � the kinematic viscosity, � the Ekman friction, F0 the forcing

amplitude, kinj the forcing wave number, ld � ð�3="Þ1=4 the dissipation scale, � � ffiffiffiffiffiffiffiffiffiffiffiffi

�E="
p

the Taylor microscale, Re� � urms�=� the

Taylor-microscale Reynolds number, Teddy � ½�PkðEðkÞ=kÞ=ð2u2rmsÞ� the eddy-turn-over time, and T	 � ffiffiffiffiffiffiffiffiffi

�="
p

the Kolmogorov time

scale. The time scales T�
E , T

�
L , and Tþ

E are obtained from exponential fits to the tails of the cumulative PDFs Q�
E , Q

�
L , and Qþ

E ,
respectively, as shown in Fig. 2(a). Tþ

mean is the average time spent by a Lagrangian particle in a vortical region, Tinj � ðl2inj=EinjÞ1=3 is
the energy-injection time scale, where Einj ¼ hfu � ui, (f! ¼ r� fu), is the energy-injection rate and linj ¼ 2�=kinj is the energy-

injection length scale. Tcf is the large-time cutoff of the scaling range of Qþ
L as shown in Fig. 2(b). We do not use data from the initial

period of duration Ttram ¼ 100Teddy; this removes the effects of transients. We use a square simulation domain with side L ¼ 2� and

grid spacing 
x ¼ L=N.

Run N � � F0 kinj ld � Re� Teddy T	 T�
E T�

L Tþ
E Tþ

mean Tinj Tcf

R1 521 0.016 0.1 45 10 2:3� 10�2 0.2 59 0.1 3:4� 10�2 0:3� 0:04 0:12� 0:02 0:21� 0:05 2:8� 10�2 0.3 0.9

R2 512 0.016 0.45 45 10 2:1� 10�2 0.1 27 0.1 2:7� 10�2 0:4� 0:05 0:17� 0:02 0:24� 0:03 4:2� 10�2 0.2 0.8

R3 1024 10�5 0.01 0.005 10 4:3� 10�3 0.1 827 11 1.9 19� 3 10� 2 13� 2 1.8 19.9 76

R4 1024 10�5 0.01 0.005 4 5:4� 10�3 0.2 1319 7 2.9 31� 5 15� 2 25� 4 2.5 30.2 81
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than the one in Fig. 2(b) and, therefore, yield values for �
with larger error bars; but these values are consistent with
our estimate for � from run R4. We also find that the
persistence exponent � does not depend on the parameters
�, F0, and kinj (within error bars) in the range of parame-

ters accessible in our simulations. Based on this evidence
we conjecture that � is a new universal exponent that
characterizes two-dimensional, Navier-Stokes turbulence.
A conclusive proof of this conjecture must await future
studies.

The exponent � > 1, so we can obtain the average life-
time Tþ

mean of a particle in a vortical region from Pþ
L .

Another estimate of the lifetime of vortices in the
Lagrangian frame is given by the time scale Tcf , which is
the cutoff scale of the power-law decay of tail of Pþ

L ,
(Table I).

In most persistence problems in nonequilibrium statisti-
cal mechanics the power-law tail for the persistence-time

PDF appears in the following way: typically we consider
the persistence-time PDF of� that comes from a Gaussian,
but nonstationary, process; a transformation to logarithmic
time s transforms such a process to a Gaussian stationary
process (GSP) XðsÞ; if, in addition, the GSP is also
Markovian, i.e., the autocorrelation function of the GSP,
fðtÞ ¼ hXðsÞXðsþ tÞis, is an exponential function of t,
then the persistence-time PDF of the GSP can be shown
to have an exponential tail [1]. If we now transform back
from logarithmic to linear time, the exponential tail is
transformed to a power-law tail. Furthermore, for a GSP
for which the autocorrelation function fðtÞ decays faster
than 1=t for large t, the persistence-time PDF PðtÞ �
expð��tÞ, where � is a constant [1].
In the two-dimensional, fluid-turbulence problem that

we study here, we have checked numerically that � is a
stationary process; hence we do not need to transform to
logarithmic time. We have calculated two types of auto-
correlation functions for� [we denote these generically by
C�ðtÞ in Fig. 2(c)]: (a) for the first we evaluate h�ð0Þ�ðtÞi
over the track of a Lagrangian particle; this is shown by
blue open circles in Fig. 2(c); (b) for the second we
evaluate h�ð0Þ�ðtÞi at a given point on our Eulerian grid;
this is shown by red full circles in Fig. 2(c); here h�i denotes
averages over different origins of time and also over Np

different Lagrangian particles, for case (a), or over Np

different Eulerian positions, for case (b). As we show in
the inset of Fig. 2(c) for both of these cases, C�ðtÞ is
approximated well by the function exp½�ðt=T�Þ2�, over
the range 10�4 < ðt=T	Þ< 10�1; this decay is clearly

faster than 1=t for large t. Here T�, the characteristic decay
time, is slightly larger in the Lagrangian case than in the
Eulerian one; however, in both of these cases T� ’ T	.

Plots of C� from our other runs R1� 3 are similar to the

FIG. 1 (color online). (a) A pseudocolor plot of the stream
function c , at a representative time in the statistically steady
state, with a representative Lagrangian-particle track (blue
squares) superimposed on it from our run R2. The symbol �
indicates the beginning of the trajectory and the� sign marks its
end. For an animated version, see the movie file at [16]. (b) log-
log (base 10) plot of the energy spectrum for our run R4 (line
with dots); the black line with a slope �3:6 is shown for
reference.

FIG. 2 (color online). (a) Representative semilog plots (base 10) of the cumulative persistence-time PDFs Qþ
E (red crosses), Q�

E

(black open circles), and Q�
L (magenta full circles); the subscripts E and L signify Eulerian and Lagrangian frames, respectively; and

the superscriptsþ or� distinguish PDFs from vortical points from those from extensional ones. The dashed lines indicate exponential
fits to these cumulative PDFs. These plots use data from our run R4. (b) A representative log-log plot (base 10) of the cumulative PDF
Qþ

L ð�Þ (d) versus � for our run R4; the full red line, with a slope equal to �2, is drawn for reference. The vertical arrows indicate the
time scales (from left to right) T	, Tinj, and Tcf , respectively. The inset shows the local slope � ¼ dlog10Q

þ
L ð�Þ=dlog10ð�Þ versus �; the

horizontal line is drawn at the mean h�i ’ �1:93 and the black dashed lines, drawn at h�i � ��, where �� ’ 0:2 is the standard

deviation of �. (c) Plots of the autocorrelation function of the Okubo-Weiss parameter C�ðt=T	Þ (see text) versus t=T	 in Eulerian

(blue open circles) and Lagrangian (red full circles) frames for our run R1. In the inset we compare the data points for these plots with
their fits (full lines) to the form G exp½�ðt=T�Þ2�.
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one in Fig. 2(c) from run R4. Note that, in the problem we
study, the persistence-time PDF is not constrained to have
an exponential tail because �, although stationary, is not a
Gaussian process.

We have presented a natural framework for studying
the persistence problem in two-dimensional fluid turbu-
lence. The most important result of our study is that the
persistence-time PDFs for vortical points show qualita-
tively different behaviors in the Eulerian and Lagrangian
cases: in vortical regions, for the Eulerian case, this PDF
displays an exponential decay; in contrast, for the
Lagrangian case it shows a power-law tail. Qualitatively
such nontrivial behavior appears because a passive particle
can be trapped for quite some time in a vortical region [11].
Furthermore, we provide away of measuring the lifetime of
a vortex precisely. In the Eulerian frame the characteristic
lifetime of a vortex is the time scaleTþ

E that follows from the
exponential form Pþ

E ð�Þ � expð��=Tþ
E Þ. However, in the

Lagrangian frame the persistence-time PDF for vortical
points shows a power-law decay with a persistence-time
exponent � ¼ 2:9� 0:2. Hence there is no single time scale
which describes the time spent by passive particles in
vortical points; but, as we have mentioned above, an aver-
age residence time can be defined because � > 1.

The PDF of residence times of passive tracers in vortical
regions Pþ

L is of great fundamental and engineering im-
portance. Earlier studies [12,13] have attempted to mea-
sure this PDF; however, their methods of obtaining it are
not as precise as the one we present here: the Okubo-Weiss
parameter �, which we employ, helps us to distinguish
clearly between vortical and extensional regions in the
two-dimensional flows we consider. The natural way of
generalizing our study to its three-dimensional counterpart
is to replace the Okubo-Weiss parameter by QR plots [14]
and then to study the PDFs of residence times of
Lagrangian particles in each quadrant of the QR plot;
here Q ¼ � 1

2 trðA2Þ and R ¼ � 1
3 trðA3Þ where A is

the velocity-gradient matrix. It remains to be seen whether
the tails of such PDFs have power-law tails in three-
dimensional turbulence; such a study lies beyond the scope
of this Letter. From the point of view of the general theory
of persistence problems, the time series of � in the
Lagrangian frame provides a particularly interesting ex-
ample. The persistence-time PDF has a power-law behav-
ior for positive � but an exponential tail for negative �. A
similar, but less dramatic, example of such asymmetry has
been observed for the case of growing interfaces whose
height h obeys the Kardar-Parisi-Zhang (KPZ) equation
[15]. For this KPZ case, the persistence-time PDF shows
power-law tails, but with different persistence-time
exponents for positive and negative h. We hope our study
will stimulate new experimental investigations of
persistence-time PDFs in two-dimensional fluid turbulence
and also studies of such PDFs for other non-Gaussian,
stationary processes.
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