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It has been recently argued that adiabatic quantum optimization would fail in solving NP-complete

problems because of the occurrence of exponentially small gaps due to crossing of local minima of the

final Hamiltonian with its global minimum near the end of the adiabatic evolution. Using perturbation

expansion, we analytically show that for the NP-hard problem known as maximum independent set, there

always exist adiabatic paths along which no such crossings occur. Therefore, in order to prove that

adiabatic quantum optimization fails for any NP-complete problem, one must prove that it is impossible to

find any such path in polynomial time.
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Adiabatic quantum optimization (AQO) was originally
proposed [1] as a possible means for solving NP-complete
problems faster than classical computation. In AQO, the
Hamiltonian of the system is evolved from an initial form,
HB, whose ground state defines the initial state of the
system, to a final Hamiltonian HP, whose ground state is
the optimal solution to an optimization problem. To ensure
a large amplitude of the ground state at the end of the
evolution, the computation time tf should increase as

tf � g�2
min, where gmin is the minimum energy gap between

the ground and first excited states during the evolution. The
complexity of AQO is therefore determined by the scaling
of gmin with the problem size.

Since its proposal, the complexity of AQO for solving
NP-complete problems has been a subject of controversy.
Early works suggested the possibility of polynomial scal-
ing with the size of the problem [1], but soon counter-
examples were found [2,3]. Later it was shown that the size
of the gap in those counterexamples can be increased
significantly by changing the adiabatic path [4] or the
initial Hamiltonian [5]. However, until recently, little in-
sight existed on the physical process that can lead to
exponentially small gaps.

Using perturbation expansion, it was shown that a local
minimum of HP crossing with the global minimum near
the end of the evolution, sometimes called a first order
quantum phase transition, can result in an extremely small
gmin, exponential in the Hamming distance between the
two minima [6]. Using the same perturbation argument,
Altshuler et al. [7] showed that for random exact cover
instances, the probability of having such crossings in-
creases with the system size and the crossing point moves
toward the end of the evolution leading to an exponentially
small gap. They, therefore, concluded that AQO would fail
in solving random exact cover problems and possibly all
NP-complete problems. Others also came to similar con-
clusions in different ways [8,9]. Later, Knysh et al. [10]
questioned the result of [7] based on neglecting degener-
acies of the minima and correlations between them.

Moreover, the possibility of avoiding small gaps by chang-
ing adiabatic path was again pointed out by Farhi et al.
[11], and the fact that one problem can be mapped into
many different Hamiltonians with different gap behavior
was mentioned by Choi [12]. Those arguments, however,
were based on numerical calculations for small problems,
therefore inconclusive for large scales.
In this Letter, we study the NP-hard [13] maximum

independent set (MIS) problem, into which the exact cover
problem can be mapped in polynomial steps [12]. Using
perturbation expansion, we analytically show that (i) for
problems with nondegenerate local minima, or degenerate
local minima distant from each other by more than 2 bit
flips, it is trivial to choose anHP so that no crossing occurs
between any local minimum (minima) and the global
minimum, and (ii) if HP has degenerate local minima,
some exactly 2 bit flips apart, it is still always possible
(although not as trivial) to avoid such crossings by chang-
ing HB. Since there are infinite possibilities of choosing
the total Hamiltonian, a valid proof of AQO failure must
show that it is impossible to find an adiabatic path with no
level crossing in polynomial time. Moreover, remaining in
the ground state is not a necessary condition for solving
NP-complete problems. As shown in Ref. [14], approxi-
mate solutions can also be used to solve NP-complete
problems exactly in polynomial time. A proof of failure,
therefore, must also show that no such approximate solu-
tions can be obtained by AQO.
The MIS problem is that of finding a largest set M of

nodes in a given graphG, such that there are no edges ofG
between any nodes in M. If n is the total number of nodes
inG, the problem of finding an MISM can be expressed as
minimizing a cost function (energy) on n binary variables
xi using [15]

xi ¼
�
1 if i 2 M;

0 if i =2 M0

EP ¼ � X
i2nodes

xi þ
X

ði;jÞ2edges

cxixj; (1)
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with c > 1. The last term in (1) is zero for every indepen-
dent set of nodes, because there is no edge between nodes
for which xi ¼ 1. Every dependent set, on the other hand,
gets a positive contribution from the sum for every pair of
adjacent nodes within it, thus resulting in a larger cost or
energy. Therefore, without the linear term, (1) would have
a hugely degenerate global minimum consisting of all
independent sets. Such a cost function (without the linear
term) has no local minima, because from every state it is
always possible to remove nodes (i.e., switch xi from
1 to 0) one by one to make all nonzero bilinear terms
vanish. Therefore, it is always possible to get from any
state to the ground state without ever increasing the energy.
The role of the linear term in (1) is to assign costs (ener-
gies) to different independent sets based on their sizes so
that the global minimum (or minima) of (1) becomes an
MIS. There can also be many local minima, which are
maximal independent sets of G, i.e., independent sets that
cannot be made larger by adding nodes.

Our goal is to solve the MIS problem using AQO. We
first represent every node with a qubit by substituting
xi ! 1

2 ð�z
i þ 1Þ, where �z

i is a Pauli matrix. Equation (1),

therefore, turns into a 2-local Hamiltonian

HP ¼ X
i

hi�
z
i þ

X
i<j

Jij�
z
i�

z
j; (2)

with hi ¼ nic=4� 1=2, where ni is the number of edges
connected to node i (degree of i), and Jij ¼ c=4 ( ¼ 0)

whenever there is an (no) edge between i and j. We
introduce time evolution Hamiltonian

H ¼ HP þ �HB; HB ¼ �X
i

�i�
x
i ; (3)

where � changes from 1 to 0.
Near the end of the evolution, where � � 1, we can use

perturbation expansion in �, taking HP as the unperturbed
Hamiltonian, to calculate eigenstates of H. Let S be any
maximal independent set (which could also be an MIS) of

size s and jSð0Þi be its corresponding state representing a
local (or global) minimum of (2). From (1) we immediately

find Eð0Þ
S ¼ �s. Upon perturbation, the energy eigenvalue

becomes ESð�Þ ¼ Eð0Þ
S þ �Eð1Þ

S þ �2Eð2Þ
S þ . . . . The first

order correction Eð1Þ
S ¼ hSð0ÞjHBjSð0Þi ¼ 0, because the op-

erators �x
i in HB each flip only one qubit. The lowest order

nonzero term is therefore second order, which as we shall
see is the dominant one.

Now suppose that jMð0Þi is the global minimum and

jM0ð0Þi is a local minimum of (2), each representing
a maximal independent set (M and M0) of size m

and m0 (<m), respectively. Let �Eð�Þ � EM0 ð�Þ �
EMð�Þ ¼ �Eð0Þ þ �2�Eð2Þ þOð�4Þ denote the energy
separation between the two states. To zeroth order,

�Eð0Þ ¼ m�m0 > 0, as expected since M is the MIS. If
at some � within the convergence radius of the perturba-
tion, �Eð�Þ< 0 for a finite order of perturbation [16], this

means that at some point � ¼ �� the two levels should
cross. This can lead to an extremely small minimum gap at
the (anti)crossing point, which is exponentially dependent
on the Hamming distance between the two minima [6].
We first consider the simplest case with no degeneracy

and a uniform transverse field, �i ¼ 1. The second order
correction to the energy is (with S ¼ M, M0)

Eð2Þ
S ¼ X

k�S

hSð0ÞjHBjkð0Þihkð0ÞjHBjSð0Þi
Eð0Þ
S � Eð0Þ

k

: (4)

Since HB involves only 1 bit flip operators �x
i , the sum

is nonzero only for states jkð0Þi that are 1 bit flip from jMð0Þi:

Eð2Þ
S ¼ �X

i

1

Bi

; Bi ¼
�
1 if i 2 S;
cdi � 1 if i =2 S;

(5)

where Bi is the energy cost of flipping qubit i from state

jSð0Þi, and di is the number of edges between i and nodes
in S. Notice that di � 2, since di ¼ 0 implies that node i is
not connected to any nodes in S, i.e., S is not maximal, and
di ¼ 1 implies that there is a degenerate state 2 bit flips
away. Up to second order in �, we find

ESð�Þ ¼ �ð1þ �2Þs� �2
X
i=2S

1

cdi � 1
: (6)

Since s is largest for the MIS, the first term in (6) is
minimum for the global minimum as desired. The sum,
however, depends on di and could be larger for a local
minimum than the global minimum. As a result, at large
enough �, it can cause the two energy levels to cross.
However, since c can be chosen to be arbitrarily large, it
is possible to reduce the effect of the sum and therefore
eliminate the anticrossing by increasing c. Physically, in-
creasing c will push low lying excited states (specifically
dependent sets) adjacent to the global and local minima
upward while keeping the minima energies fixed. This

would reduce the relative magnitude of Eð2Þ
S in (4), as it

inversely depends on the excited state energies. For ex-
ample, by choosing c ¼ n, we get

�Eð�Þ> ð1þ �2Þðm�m0Þ � �2 n�m0

2n� 1
> 1þ �2

2
; (7)

because m�m0 � 1, m0 � 1, d0i � 2, and the number of
nodes not in M0 is n�m0. This is strictly positive; there-
fore, no anticrossing occurs between those minima.
The above argument holds beyond second order pertur-

bation. Assuming c ¼ n and that a minimum S is suffi-
ciently isolated from other minima so that up to q bit flips
the energy of the state always increases, the qth order
perturbation correction to the energy is

EðqÞ
S ¼ ð�1Þq=2ðq� 2Þ!

ðq=2� 1Þ!ðq=2Þ! sþOð1Þ: (8)

The radius of convergence deduced from (8) is �c ¼ 1
2 ,

and the contribution from each successive term
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monotonically decreases within �c, so the second order
term remains dominant. Moreover, neglecting the Oð1Þ
part of (8) compared to the first �ðsÞ term, we find that
up to the qth order perturbation, where validity of (8)
stands, we can write EM0 ð�Þ ¼ ðm0=mÞEMð�Þ, therefore
�Eð�Þ ¼ ½ðm0 �mÞ=m�EMð�Þ> 0, which follows from
m>m0 and EMð�Þ< 0. This means that up to the qth
order perturbation, the levels do not cross.

The price to pay for eliminating the level crossings is
to increase the coupling constant c linearly with the size
of the problem. Alternatively, one can keep c constant, but
divide the linear terms in (1) by n to achieve the same goal,
as was done in [12] (although the local minima in [12] are
degenerate). This leads to smaller energy steps in the
spectrum of HP and therefore higher required precision.
In both cases, the scaling of the coupling constant or
precision with n is polynomial (linear), whereas the gain
in eliminating the crossings could be exponential.

One may argue that by increasing c with n, or equiv-
alently dividing the linear terms in (1) by n, we reach a
regime in which the bilinear terms in (1) become dominant
and determine the dynamics of the system. Thus, although
there is no level crossing for � � 1 considered above,
there could be one for 1 � � � n. In this region, one
can neglect the linear terms in (1) and repeat the above
perturbative argument keeping only the bilinear terms.
However, as mentioned earlier, the Hamiltonian without
the linear terms has no local minima, but only a hugely
degenerate global minimum consisting of all independent
sets. Such a Hamiltonian, therefore, cannot produce a
crossing in the way discussed above.

So far, we have only considered nondegenerate states,
which is indeed the level of discussion in Refs. [7,11]. We
now take a step further and discuss cases with degenerate
minima. We first have to generalize (4) to include degen-
eracies. Suppose there are K maximal (or maximum) in-

dependent sets Sk of size s, with k ¼ 1; . . . ; K. States jSð0Þk i
and also every superposition of them are therefore degen-
erate eigenstates of HP. Perturbation in � removes this

degeneracy. Let jSð0Þi ¼ P
kCkjSð0Þk i represent the lowest

energy superposition after the degeneracy is lifted. With
the positive sign of �i, Ck will all be positive real numbers
with the constraint:

P
kC

2
k ¼ 1. The first order correction is

zero because all Sk are the same size (s) and therefore one
cannot get from one minimum to another by a single bit flip
(adding or removing a single node). The second order
correction is

Eð2Þ
S ¼ � X0

ðk;k0Þ;ði;jÞ

�i�jCkCk0

Bk;i

; (9)

where Bk;i is the cost of flipping qubit i from state jSð0Þk i,
and the prime sign on the sum means that the sum is over

all the paths from jSð0Þk i to jSð0Þ
k0 i with 2 bit flips by first

flipping qubit i and then qubit j.

If there are no two minima jSð0Þk i and jSð0Þ
k0 i that are

exactly 2 bit flips distant from each other, (9) becomes
similar to the nondegenerate Eq. (4). In that case, the
argument deduced from (4) holds, i.e., level crossings
can be eliminated by increasing c linearly with n. The
exceptions, therefore, are cases with minima 2 bit flips
apart from each other. The worst cases would have only
one global minimum but numerous local minima 2 bit flips

apart. The negative contribution to Eð2Þ
M0 can then become

large enough to bring down the total energy of the local
minima below that of the global minimum at a � < �c.
This is the case we shall consider now.
To eliminate the above crossing, we need to make

the energy difference �Eð�Þ ¼ m�m0 þ �2�Eð2Þ strictly
positive. This is achieved if

�Eð2Þ ¼ X
i

�2
i

Bi

� X0

ðk;k0Þ;ði;jÞ

�i�jCkCk0

B0
k;i

> 0: (10)

Here, Bi (B
0
k;i) is the cost of flipping qubit i in the global

minimum M (local minimum M0
k). A sufficient condition,

which is independent of Ck, is

X
i

�2
i

Bi

�max
k

X0

k0;ði;jÞ

�i�j

B0
k;i

> 0: (11)

This can be proved using the fact that for every non-
negative, symmetric matrix A operating on unit vectors
v, we have maxvv

TAv � maxk
P

k0 Akk0 . For simplicity,
here we focus on the large c regime (e.g., c ¼ n) for which
the states that violate edges can be neglected. All calcu-
lations can be generalized to the small c regime, but the
equations become more complicated. Condition (11) be-
comes F ðf�igÞ> 0, where

F ðf�igÞ �
X
i2M

�2
i �max

k

X
i2M0

k

�
�2

i þ
X0

k0;j
�i�j

�
: (12)

Since there is freedom in choosing values of �i, one can
choose them such that F ðf�igÞ> 0. A successful assign-
ment makes the first term in (12) large and/or the second
term small so that the result becomes positive. A trivial
choice is �i2M ¼ � and �i=2M ¼ 1. Let pk ¼ jM \M0

kj.
Since M0

k is a local minimum, we have pk � m� 2. Also,
there are at most n�m0 local minima all 2 bit flips away
from M0

k. Therefore,

F � �2m�max
k

ð�2pk þm0 � pk þ �ðn�m0ÞÞ
� 2�2 � �ðn�m0Þ �m0 þ 1; (13)

which is positive if

�>
n�m0 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn�m0Þ2þ8ðm0 �1Þp

4
	n�m0

2
: (14)

Such an assignment, however, is not very useful, since
it assumes knowing the solution to the problem.
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Nevertheless, it proves the existence of at least one assign-
ment of �i for which no crossing occurs.

We now consider another assignment which does not
assume the solution. Let M0 ¼ [kM

0
k and p ¼ jM \M0j.

We assign�i2M0 ¼ � and�i=2M0 ¼ 1. The last term in (12)

is multiplied by �2 and the first term becomes m� pþ
�2p. We find F � m� pþ �2p� �2½m0 þ n�m0�.
In order for F > 0, it is sufficient to have �<ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm� pÞ=ðn� pÞp

. Therefore, as long as m> p, that is
as long as there is at least one node in the global minimum
that is not in any of the local minima, there exists an
assignment of �i for which no crossing happens during
the adiabatic evolution. As before, the scaling of�with the
size of the system is only polynomial.

This assignment does not require knowledge of the
global minimum (solution), but only knowledge of the
local minima, which can be obtained by running the evo-
lution multiple times with �i ¼ 1. If there is a crossing
between the global minimum and the state comprising the
local minima, every time the system does not reach the
global minimum, it falls into one of the local minima.
Moreover, other degenerate local minima in the neighbor-
hood of the one reached can be obtained in polynomial
time using local search. The more information is obtained
from such suboptimal evolutions, the more one can adjust
�i to avoid the crossing.

The above assignment may not eliminate all such cross-
ings if m ¼ p. However, there are an infinite number of
ways to define the input parameters. For example, one can
choose nonuniform �i within M0 or nonuniform Jij.

Combining these and other ideas may also give a
Hamiltonian that satisfies (11). There are therefore infi-
nitely many possibilities to define a Hamiltonian for solv-
ing an NP-hard problem instance, many of which may not
have level crossings. An iterative numerical method that
follows from the above ideas has proven to be successful in
eliminating crossings in extremely difficult instances with
highly degenerate local minima, even where m ¼ p [17].
Other methods have also been proposed for finding an
optimal path [18].

It is important to note that we are not trying to prove that
all level crossings between a global minimum and local
minima can be eliminated in polynomial time. Neither are
we claiming that if they are eliminated, the MIS problem
can be solved in polynomial time. Even if all level cross-
ings are eliminated, the scaling of the minimum gap in the
rest of the spectrum is still unknown. What we are stating
here is that there always exist paths along which no cross-
ing occurs, at least up to second order perturbation. Since
MIS is NP hard, any NP problem can be polynomially
mapped onto it. Therefore, a valid proof that any NP-
complete problem cannot be solved using AQO because
of level crossings must prove that for the problem mapped
onto MIS, it is impossible to find an assignment of parame-
ters for which there is no level crossing. Further, due to the
NP hardness of approximating solutions to MIS [14], even

if there are multiple crossings, AQO may produce suffi-
cient solutions to solve NP-complete problems.
In conclusion, using perturbation expansion, we have

shown that for the NP-hard problem of MIS, it is always
possible to write down a Hamiltonian for which during the
adiabatic evolution no crossing occurs between a global
minimumand any localminima. If there is no degeneracy in
the local minima, or if there are degenerate local minima
but no pair of them is exactly 2 bit flips apart, such a
Hamiltonian can be trivially obtained by increasing the
coupling coefficient between the qubits linearly with the
size of the problem. In cases with local minima exactly 2 bit
flips away from each other, one can use the freedom of
choosing the initial Hamiltonian to avoid level crossings. In
the latter case, finding an assignment for tunneling ampli-
tudes �i could be nontrivial. However, we have shown that
such an assignment always exists. In general, there are
infinite ways of defining the Hamiltonian, including those
where many approximate solutions suffice; therefore, it
seems infeasible to prove that no successful Hamiltonian
can be obtained in polynomial time.
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