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We find the necessary and sufficient conditions for the entropy rate of the system to be zero under any

system-environment Hamiltonian interaction. We call the class of system-environment states that satisfy

this condition lazy states. They are a generalization of classically correlated states defined by quantum

discord, but based on projective measurements of any rank. The concept of lazy states permits the

construction of a protocol for detecting global quantum correlations using only local dynamical

information. We show how quantum correlations to the environment provide bounds to the entropy

rate, and how to estimate dissipation rates for general non-Markovian open quantum systems.
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Protecting a quantum system from decoherence is one of
the main challenges in quantum computation [1]. It is
common to only consider a system state (S) initially un-
correlated from its environment (E), but that is weakly
coupled to it. A measure that quantifies the degree of
decoherence of the system is the von Neumann entropy
S :¼ �trf�S ln�Sg. In such a case, decoherence arises
from correlations developed as a consequence of the SE
coupling which change the system entropy. Starting from
this point of view that assumes that the system undergoes
open quantum system dynamics [2–4], the entropy of
quantum systems can be preserved from decoherence.
Symmetries of the dynamics can be exploited [5–9] or
dynamical operations can be performed [10–12] to stabi-
lize the entropy of a system.

We depart from that approach that focuses on the struc-
ture of the open system dynamics with an unknown envi-
ronment and the standard approximations that go with it.
Instead, we take the point of view of studying the structure
of the total system-environment states �SE and their rela-
tionship to the system decoherence. This allows us to make
theoretical progress, without resorting to assuming explicit
knowledge of the SE Hamiltonian. In this Letter, we find
universal properties of the system entropy rates that are
independent of the details of the SE coupling. By taking
this different approach, we find the necessary and sufficient
conditions for the class of system-environment states for
which the rate of change of the system entropy at a time �
(entropy rate) is zero, d

dtSð�SÞjt¼�, for any type of inter-

action with the environment Hint.
We also demonstrate how correlations to the environment

not only lead to decoherence, but also provide a bound on
the decoherence rate valid beyond the weak-coupling limit
and without any assumptions of Markovianity. Our proof
goes beyond previous work by Kimura et al. [13,14] which

showed that SE correlations were a necessary condition
for the change of purity (linear entropy) under any
interaction.
To prove these results, we consider general evolution of

the density operator in finite-dimensional Hilbert space
SE given by the von Neumann equation, d

dt �
SE
t jt¼� ¼

�i½Htot; �
SE
� �. The total Hamiltonian is Htot ¼ HS � IE þ

IS �HE þHint [15], which consists of the system, the
environment and the interaction Hamiltonians [16]. The
time dependence of Htot is implicit, but without loss of
generality we write Htot in the picture where Hint is time-
independent. Using this, we want to consider properties of
the dynamics of the system density matrix at time �, �S

� ¼P
jpj�

S
j , where f�jg are orthonormal projectors of any

rank chosen such that fpjg is nondegenerate.
We start by considering functions of the formof fNð�SÞ ¼

trSfð�SÞNg ¼ P
jp

N
j . By taking the trace of the environment

in the von Neumann equation, and taking the time derivative
of fN , we obtain, ½ddt fNð�S

t Þ�t¼� ¼ �itrSfNð�S
� ÞN�1�

trE½Htot; �
SE
� �g ¼ �iNtrSEfð�S

� ÞN�1 � IE½Hint; �
SE
� �g, where

the cyclic property of the trace was used. Note that the
dependence on HS and HE vanishes [17]. Using the cyclic
property of the trace once more, we find, ½ ddt fN�� ¼P

jNpN�1
j ½ddt pj�� ¼ iNtrfHint½ð�S

� ÞN�1 � IE ; �SE
� �g. With

this result at hand, which is valid for all powers N, we do a
series expansion of the von Neumann entropy to obtain the
exact expression for the entropy rate:

�
d

dt
S
�

t¼�
¼ �itrSEfHint½lnð�S

� Þ � IE ; �SE
� �g; (1)

which expresses the dependence of the entropy rate in terms
of the system-environment interaction Hint and the commu-
tator [ lnð�SÞ � IE , �SE]. This expression is true for any
kind of system-environment couplings, including strong
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coupling and is highly non-Markovian. Note that ½lnð�SÞ �
IE ; �SE� ¼ 0 , ½�S � IE; �SE� ¼ 0 for generic states. We
will use this commutator often in this Letter, and refer to it as

C ð�SEÞ :¼ ½�S � IE ; �SE�; (2)

which contains some important properties of the structure of
the total system-environment state with respect to its system
part. Considering the properties of the totalSE state separate
from the details of theHamiltonian allow us to obtain the first
important result of the Letter:

�
d

dt
St

�

t¼�
¼ 0 8 Htot , Cð�SEÞ ¼ 0: (3)

Equation (3) means that the necessary and sufficient condi-
tion for the entropy rate of the system to be zero under any
coupling to the environment Hint is that the bipartite state
�SE
� has the property Cð�SEÞ ¼ 0.
We refer to the SE states that have the property

Cð�SEÞ ¼ 0 as lazy states. Lazy states do not have to be
eigenstates of Htot nor of Hint. Effectively, they lead to
closed system dynamics for very short times, independent
of the details of the Hamiltonian coupling [18]. The class
of lazy states is also different from the concept of subde-
coherent states and decoherence-free subspaces [5–12], as
lazy states are independent from the particular symmetries
of the dynamics. Lazy states are a natural consequence of
dynamical stability of the entropy measure under arbitrary
open system dynamics, connecting the dynamical proper-
ties of reduced systems S to the structure of the total
SE state [19,20]. When the lazy states condition is
satisfied, the entropy of the system can in principle be
preserved by fast measurements or dynamical decoupling
techniques [10–12]. The connection between the condition
d
dtSjt¼� ¼ 0 and decoherence suppression is analogous to

the connection between the Zeno time, where
hc 0j d

dt jc tij0 ¼ 0, and the quantum Zeno effect [10,21].

When Eq. (3) holds, the Markovian approximation is
inadequate to model decoherence as it would imply that
there is no decoherence. The standard assumption of the
initial condition corresponding to a system uncorrelated
from its environment, �SE � �S � �E , corresponds to a
lazy state, and its entropy does not change for short times.
A nonzero entropy rate only occurs for nonlazy states. In a
different context, Ferraro et al. [22] showed that lazy states
are sparse in the space of density matrices, in both the
sense of volume and topology, having measure zero in the
whole Hilbert space and nowhere dense. This highlights
the limitations of the physical requirements necessary to
derive the Markovian quantum master equation [3]. So far,
we have discussed how lazy states are connected to the
specific dynamical properties of Eq. (3). However, lazy
states also have other important properties in terms of
bipartite quantum correlations. In fact, lazy states can be
thought of a generalization of classically-correlated states
as defined by quantum discord [23–27]. Quantum discord

is a useful measure that assigns a degree of quantumness to
SE correlations. When the discord is zero, the state is said
to have only classical correlations. Quantum discord quan-
tifies the difference between the quantum mutual informa-
tion of S and E, and the mutual information after an
optimal set of measurements fjjihjjS � IEg. A state �SE

is classically correlated (has zero discord) if and only if
it has the form �SE ¼ P

jpjjjihjjS � �E
j , where fjjig form a

rank-1 orthonormal basis of S, fpjg are the corresponding
probabilities, and �E

j are density matrices. This classicality

is equivalently expressed by an invariance under the set of
measurements fjjihjjS � IEg such that �SE ¼ P

jjjihjjS �
IE�SEjjihjjS � IE [28].
According to quantum discord, classical correlations are

characterized by bipartite states that are invariant under a
set of measurements given by rank-1 projectors on S. We
now show that by generalizing this concept to projectors of
higher rank, we obtain the set of lazy states. That is, let �SE

be an arbitrary bipartite state on the SE space. Then,

C ð�SEÞ ¼ 0 , �SE ¼ X

j

�S
j � IE�SE�S

j � IE; (4)

where �S ¼ P
jpj�

S
j and f�S

j g are orthonormal projectors

that span the space of S, but need not be of rank-1 or of the
same dimensionality such that fpjg are nondegenerate.
To proveEq. (4), assume thatCð�SEÞ ¼ 0. Since�S

j � IE

is a projector to the eigenspace of �S � IE , we have
�SE�S

j � IE ¼ �S
j � IE�SE ¼ �S

j � IE�SE�S
j � IE . By

the completeness
P

j�
S
j � IE ¼ IS � IE , we have thatP

j�
S
j � IE�SE ¼ �SE. The converse can be seen from

direct calculation.
The right side of Eq. (4) is the post-measurement

state under local projectors f�jg. These states include

uncorrelated states, maximally entangled states and states
with zero quantum discord, and any other states that satisfy
C ¼ 0. These properties can be exploited to design experi-
ments that detect global bipartite quantum correlations by
monitoring only the dynamics of a subsystem. Connecting
Eq. (3) to Eq. (4) allows us to conclude that under the
presence of any interaction with its environment, the en-
tropy rate of a system is zero if the system has classical
correlations, as defined by quantum discord. If the entropy
of the local subsystem has a nonzero time derivative, then
the total state is not a lazy state, and it has a nonzero
quantum discord. This can serve as a protocol that detects
quantum discord between S and E by monitoring the purity
of S, without knowledge of any environmental properties
or of the total Hamiltonian. Previous results for uncorre-
lated states [13,14] are special cases of this.
Lazy states also provide a dynamical explanation for the

robustness of measurement apparatus against decoherence.
For finite-dimensional Hilbert space, the orthonormal
states that define the measurement apparatus fj�iih�ijg
are called pointer states and uniquely specify the measured
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quantity. Equation (3) and (4) provide a dynamical argu-
ment in favor of the stability of these pointer states [1]. Let
Q be a quantum state to be measured and M be the
macroscopic measurement apparatus. This is equivalent
to relabeling S ! M and E ! Q. The act of a measure-
ments correlates the measurement apparatus with the quan-

tum state into �MQ ¼ P
ipij�iih�ijM � �Q

i . This is a
classically correlated state from the apparatus’ point of
view, and thus is a lazy state.

Furthermore, by maintaining the conceptual separation
of the Hamiltonian dynamics from the structure of the total
state we establish a new connection between nonlazy states
and the entropy rate. Consider a bounded operator A and a
trace-class operator � on a Hilbert space. It follows that
jtr½A��j � kA�k1 � kAkk�k1 [33]. Applying this to
Eq. (1), we arrive to another important result:

��������
d

dt
SS

t

��������t¼�
� kHintkk½lnð�SÞ � IE ; �SE�k1: (5)

In Eq. (5), Hint defines the time scale of the decoherence
process, and k½lnð�SÞ � IE ; �SE�k1 provides a universal
bound on the rate of decoherence for a system-environment
interaction Hint of arbitrary strength. Thus, there is a
maximum magnitude of entropy rate that come only
from the structure of the total state. This result can also
be used to estimate the rate of decoherence, as measured by
the entropy rate time �, from partial knowledge of the total
SE state in relationship to S and partial information about
the strength of the SE interaction.

To obtain some conceptual understanding of what the
normof the commutator in Eq. (5)means,wewill now focus
on a simpler case. A similar exact result to Eq. (1) can be
found for the purity (linear entropy) rate of the system:
½ ddtP�t¼� ¼ itrSEfHint½�S

� � IE ; �SE
� �g. Likewise, the magni-

tude of the entropy rate of the system is bound by:
j d
dtPtjt¼� � 2kHintkkCð�SEÞk1. The quantity kCð�SEÞk1
measures how ‘‘far’’ total system-environment density ma-
trix is from commuting with the reduced system density
matrix. To get some intuition for the meaning of kCk1,
we will now consider only SE states that are pure, j�i�
h�jSE. We can show how this is not a restrictive class by
invoking the Church of the Larger Hilbert Space [34]. By
defining an ancillary spaceA, any state�SE can be purified

into j�ih�jSEA [35]. Sincewe are interested in properties of
the evolution of the system S, we can refer to the rest of the
Hilbert space EA simply as a new environment, and for
simplicity relabel it as EA ! E. Similarly, the total
Hamiltonian can be thought of trivially acting on the ancilla,

Htot ! Htot � IA.
It is easy to show that for pure states %SE ¼ j�ih�j all

the standard notions of uncorrelated states, classically
correlated states, and separable (not entangled) states co-
incide. Using this fact, we can show that the purity rate is
bounded by the quantum mutual information, the entropy
of entanglement, [36], and the quantum discord. From [13],

j d
dtPj � 4kHintk

ffiffiffiffiffiffiffiffiffiffiffiffi
2Ið�Þp

, where Ið�Þ :¼ Sð%SÞ þ Sð%EÞ �
Sð%SEÞ is the quantum mutual information. Since %SE is
pure, it follows that Ið�Þ ¼ 2Sð%SÞ ¼ 2Eð�Þ ¼ 2�S!Eð�Þ,
where Eð�Þ :¼ Sð%SÞ is the entropy of entanglement and
�S!Eð�Þ is the quantum discord. Thus kCðj�ih�jÞk1 is
bounded by the amount of SE correlations. Previous
work [37] shows how this is related to the entanglement
power of a Hamiltonian.
In addition, pure lazy states have very simple properties

that allow us to connect them to other types of correlations.
Let %SE ¼ j�ih�j be a pure state, with Schmidt decompo-
sition � ¼ Ps

i¼1

ffiffiffiffiffi
pi

p
c i ��i (pi > 0), where the elements

of f ffiffiffiffiffi
pi

p g are Schmidt coefficients and s � min½ds; de� is the
Schmidt rank. Using %S ¼ P

s
i¼1 pijc iihc ij to explicitly

calculate Cð%SEÞ ¼ 0, we have p3=2
i p1=2

k ¼ p3=2
k p1=2

i for

all i, k ¼ 1; . . . ; s. This is satisfied if and only if pi ¼ 1
s

for all i ¼ 1; . . . ; s. We conclude that, %SE ¼ j�ih�j is a
lazy state if and only if pi ¼ 1

s . These states include the

important class of maximally-entangled states. We can use
this result to connect kCk1 to robustness of entanglement
[38] and the negativity [39]. By direct computation one has
C� :¼ Cð%SEÞ ¼ P

i�k
ffiffiffiffiffiffiffiffiffiffi
pipk

p ðpi � pkÞjc iihc kj � j�ii�
h�kj. Taking the trace norm and using the triangle inequal-
ity, we obtain C� � P

i�k
ffiffiffiffiffiffiffiffiffiffi
pipk

p jpi � pkj. The inequality
is generally strict but if the Schmidt number is 2, the equal-
ity holds. Since 0 � pi � 1, one has jpi � pkj � 1, which
gives the bound: C� � P

i�k
ffiffiffiffiffiffiffiffiffiffi
pipk

p ¼ ðPi
ffiffiffiffiffi
pi

p Þ2 � 1. The

right hand side is the robustness of entanglement Rð�Þ for
pure states [38], which coincideswith 2Nð�Þ, whereNð�Þ is
the negativity of � [39]. Here we have shown how for pure
states kCk1 is bound by the total amount of correlations.
In conclusion, we focus on studying universal properties

of the system dynamics that are independent of the details
of the system-environment coupling, but that depend on
the structure of the total system-environment state. We
defined the class of lazy states, which have the property
½�S � IE ; �SE� ¼ 0, and prove that this is a sufficient and
necessary condition for the system entropy rate to be zero.
This effectively makes the open system dynamics to act as
if they were closed dynamics for short times. Lazy states
are a generalization of the classically correlated states, as
defined by quantum discord. This result was used to ex-
plain the dynamical stability of a measurement apparatus
and the pervasive nature of decoherence. Also, we pro-
posed an experimental protocol for detecting global quan-
tum correlations from local observables. Finally, we
showed how the time derivative of the purity is bounded
by the amount of system-environment correlations, estab-
lishing that bipartite correlations not only restrict the en-
tropy of a subsystem, but also its rate of change.
Future work will include a generalization of lazy states

for continuous variables. Also, further exploration is
needed to understand kCk1. Can it be thought as a distance
measure to lazy states? Work along these lines might reveal
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other features of decoherence dynamics that are universal
for any Hamiltonian.
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