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We study the quench dynamics of a two-component ultracold Fermi gas from the weak into the strong

interaction regime, where the short time dynamics are governed by the exponential growth rate of unstable

collective modes. We obtain an effective interaction that takes into account both Pauli blocking and

the energy dependence of the scattering amplitude near a Feshbach resonance. Using this interaction we

analyze the competing instabilities towards Stoner ferromagnetism and pairing.
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Ferromagnetism in itinerant fermions is a prime ex-
ample of a strongly interacting system. Most theoretical
treatments rely on a mean-field Stoner criterion [1], but
whether this argument applies beyond mean-field remains
an open problem. It is known that the existence of the
Stoner instability is very sensitive to the details of band
structure and interactions [2–4]. However, how to account
for these details in realistic systems remains poorly under-
stood. Following theoretical proposals [5], the MIT group
made use of the tunability [6] and slow time scales [7–10]
of ultracold atomic systems to study the Stoner instability
[11]. Signatures compatible with ferromagnetism, as
understood from mean-field theory [12], were observed
in experiments: a maximum in cloud size, a minimum in
kinetic energy and a maximum in atomic losses at the
transition. However, no magnetic domains were resolved.

An important aspect of the MIT experiments is that the
Fermi gas was prepared with weak interactions after which
the interactions were ramped to the strongly repulsive
regime. Dynamic rather than adiabatic preparation was
used to avoid production of molecules. This raises the
question of what are the dominant instabilities of the
Fermi gas in the vicinity of a Feshbach resonance.

Naively, one expects that on the BEC side, molecule
production is slow, as it requires a three-body process.
Therefore, the instability towards Stoner ferromagnetism
should dominate over the instability toward molecule pro-
duction. Likewise, one expects that quenches to the attrac-
tive (BCS) side always yield a pairing instability.

In this Letter, we argue that this picture, which was used
to interpret the MIT experiments, is incomplete. Near the
Feshbach resonance, even on the BEC side, pair production
remains a fast two-body process as long as the Fermi sea
can absorb the molecular binding energy. As a result, near

the Feshbach resonance, both on the BEC and the BCS
side, the pairing and the Stoner instabilities compete.
We start by describing the interatomic interactions. A

Feshbach resonance enables tunable interactions between
ultracold atoms by coupling the collision partners to a
molecular state with a different magnetic moment. For
broad resonances, where the coupling is much larger than
the Fermi energy, this can be modeled by a single collision
channel that supports one shallow bound state [13]. An
often used, but pathological choice, is the hard-sphere
pseudopotential. Although at low energies the scattering
amplitude from the hard-sphere potential and the T matrix
match, at higher energies comparable to the molecular
binding energy, they do not [14]. In the strong interaction
Stoner-regime, the Fermi energy is comparable to the
binding energy of a molecule in vacuum, precluding the
use of the hard-sphere potential.
In light of this remark, we study the initial dynamics of

the collective modes of a fermionic system after a sudden
quench, taking the Cooperon (full T matrix and Pauli
blocking) into account. We focus on the case of a sudden
quench, as it is simpler and captures the essential physics
of the instability of the Fermi surface. Our main findings
are summarized in Fig. 1 and are: (a) With the full T matrix
the Stoner instability survives with a finite growth rate
in the range �0:2 & kFa & 1, where a is the scattering
length and kF the Fermi momentum. In contrast, bare
interactions [15] result in an unphysical divergence of
the growth rate at unitarity and no magnetic instabilities
on the BCS side (see Fig. 1). (b) The pairing instability
persists on the BEC side, where it competes with the Stoner
instability. (c) The pairing instability is always stronger.
Pairing and Stoner instabilities on the wrong side of the

resonance seem remarkable. Both can be understood by
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taking into account the Fermi sea. On the BEC side, due to
Pauli blocking, the binding energy of the pairlike molecule
can be absorbed by the two holes that are left behind (see
the inset of Fig. 1). Thus, the two-body pairing process
becomes forbidden when the binding energy �1=ma2 ex-
ceeds the maximum energy that can be absorbed by the
holes�k2F=m (m is the fermion mass, and in which @ ¼ 1).
On the BCS side, although interactions at low energies are
indeed attractive, the same is not true at high energies. As
the Stoner instability involves all scattering energies up to
the Fermi energy, it can persist on the BCS side.

Formalism.—We consider a system of interacting fermi-
ons described by the Hamiltonian:

H ¼ X

k;�

�k�c
y
k�ck� þ

Z
d3rUðt; r� r0Þcyr"cyr0#cr0#cr"; (1)

where cy�ðc�Þ creates (annihilates) a fermion with spin �,
�k ¼ k2=2m� �F, where �F is the Fermi energy, and
Uðt; r� r0Þ is the interatomic interaction being quenched.
We describe the short time dynamics of collective modes
using the corresponding susceptibility �qð!q;UfÞ,
evaluated with final interactions but initial fermionic
configuration [15,16]. In particular, if �qð!q;UfÞ has

poles at !q ¼ �q þ i�q in the upper half of the complex

plane, then fluctuations that occur after the quench will
grow exponentially in time.

Cooperon.—In this section, we obtain the Cooperon, C,
i.e., the T matrix that takes into account Pauli blocking of
states by the Fermi sea (see Fig. 3). In the center of mass
frame in vacuum, the scattering of a pair of particles with
identical masses m near a wide Feshbach resonance is

described by the T matrix (scattering amplitude) �ðEÞ ¼
m
4� ð1a þ i

ffiffiffiffiffiffiffiffi
mE

p Þ�1, where, E is the energy of the scattered

particles and a is the scattering length associated with the
pseudopotential Uðr� r0Þ that appears in Eq. (1). As
the Fermi sea breaks translational invariance, we work in
the coordinates where the sea is at rest. Comparing the
Lippmann-Schwinger equations with and without a Fermi
sea (in analogy to Ref. [17]) we obtain

C�1ðE;qÞ ¼ ��1ðEþ 2�F � q2=4mÞ

þ
Z d3k

ð2�Þ3
nFðq2 þ kÞ þ nFðq2 � kÞ
E� �ðq=2Þþk � �ðq=2Þ�k

: (2)

Here, E and q are the center of mass frequency and
momentum of the pair, and nFðkÞ is the Fermi function.
Pairing instability.—The Cooperon is related to the pair-

ing susceptibility via �pairð ~qÞ¼
R
d ~k1d ~k2Gð ~k1ÞGð ~q� ~k1Þ

Cð ~qÞGð ~k2ÞGð ~q� ~k2Þ, where ~q stands for the external fre-

quency and momentum vector fE;qg, d ~k1 stands for

d!1dk1=ð2�Þ4, and Gð ~k1Þ ¼ Gð!1;k1Þ is the bare fermi-
onic Green function in the noninteracting Fermi sea corre-
sponding to the initial state. The pole structure of �pairð ~qÞ
match that of Cð ~qÞ, which we now investigate.
We begin our analysis with the T matrix in vacuum. For

each value of a, �ðE;qÞ has a line of poles on the BEC side
located at !q ¼ �1=ma2 þmq2=4, corresponding to the

binding energy of a Feshbach molecule with center of mass
momentum q. As a consequence of energy and momentum
conservation the pole frequency is real, indicating that a
two-body process in vacuum cannot produce a Feshbach
molecule. In the presence of a Fermi sea, the states below
the Fermi surface are Pauli blocked, shifting the poles of the
Cooperon relative to the T matrix in two ways. First,
the real part of the pole �q, which would correspond to

the binding energy of a pair in the absence of an imaginary
part, uniformly shifts down [see Fig. 2(a)]. This shift in-
dicates the appearance of a paired state on the BCS side as
well as stronger binding of the pair on the BEC side.
Second, in the range�1< 1=kFa & 1:1 the pole acquires
a positive imaginary part�q that corresponds to the growth

rate of the pairing instability. As depicted in Fig. 1,�q¼0 �
8�Fe

�=2kFa�2 on the BCS side, i.e., the pairing rate matches
the BCS gap in equilibrium [18]. On the BEC side, the
growth rate continues to increase, reaching a maximum at
kFa � 2, and finally decreasing to zero at kFa � 1:1,
at which point the Fermi sea can no longer absorb the
energy of the Feshbach molecule in a two-body process.
Deeper in the BEC regime pairing takes place via the more
conventional three-body process and would round the
pairing instability curve near kFa � 1:1 in Fig. 1. Pairing
at finite q is always slower than at q ¼ 0, with �q mono-

tonically decreasing to zero at q ¼ qcut [see Fig. 2(b)].

Throughout the resonance the approximation qcut �
ð ffiffiffiffiffiffiffiffi
3=2

p Þð�q¼0=�FÞkF works reasonably well except in the

vicinity of kfa� 2 where qcut reaches the maximal value

for a two-body process of 2kf.
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FIG. 1 (color online). Growth rate of the pairing and Stoner
ferromagnetic instabilities after a quench as a function of the
final interaction strength 1=kFa. Final interactions with negative
(positive) values of 1=kFa correspond to the BCS (BEC) side of
the Feshbach resonance. The Stoner instability simultaneously
occurs in multiple channels. The most unstable channel is
indicated by the solid red line, the others by dashed red lines.
The ‘‘RPA Stoner’’ instability corresponds to the RPA result with
bare interactions (see text and Ref. [15]). Inset: Schematic
diagram of the pair creation process showing the binding energy
(spring) being absorbed by the Fermi sea (arrows).
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Stoner instability.—Our goal is to compute the ferro-
magnetic susceptibility using the Cooperon to describe
effective interatomic interactions, which allows us to in-
clude three important aspects of the problem: energy de-
pendence of the scattering amplitude near the Feshbach
resonance; Pauli blocking, which renormalizes the energy
of the virtual two particle bound states involved in scatter-
ing; and Kanamori-like many-body screening [4].

Technically, we compute the vertex function
�!;qð!1;k1Þ, which is related to the susceptibility via

�FMð ~qÞ ¼
R
d ~k1Gð ~qþ ~k1ÞGð ~k1Þ� ~qð ~k1Þ. Replacing the

point contact interaction vertex by the Cooperon in an
RPA type resummation of the vertex function (see Fig. 3
and Ref. [4]) we obtain

� ~qð ~k1Þ¼1þ
Z
d ~k2� ~qð ~k2ÞCð ~k1þ ~k2þ ~qÞGð ~k2þ ~qÞGð ~k2Þ:

To compute the vertex function, a number of approxi-
mations are unavoidable. First, we assume that q and !
are both small, which is valid in the vicinity of
the Stoner transition. Second, in the spirit of Fermi liquid
theory, we assume that the most important poles come
from the Green functions, and hence we replace

Gðk2 þ q; !2 þ!ÞGðk2; !Þ ! 2�
vF

q�k2

m!�q�k2
�ð!Þ�ðjk2j �

kFÞ [18]. We then obtain

�q;!ðk̂1Þ ¼ 1þ
Z dk̂2

4�
�q;!ðk̂2ÞCðk̂1 þ k̂2; !ÞIq;!ðk̂2Þ;

(3)

Iq;!ðk̂2Þ ¼
Z k22dk2

2�2

nFðk2 � q=2Þ � nFðk2 þ q=2Þ
!� �k2�q=2 þ �k2þq=2

;

(4)

and k̂ indicates a vector on the Fermi surface. The ap-

proximation involves that we can replace k1 and k2, by k̂1

and k̂2 when evaluating the Cooperon, i.e., that the
Cooperon changes slowly compared to the Green func-
tions. This approximation captures the most singular con-
tributions to the vertex function in the entire parameter
range. For weak interactions, where the Cooperon is
weakly momentum and frequency dependent, our approxi-
mation reduces to the standard RPA [15,18].
In the range �0:2 & 1=kFa & 1:0, there is one or more

lines of complex poles with a positive imaginary part �q,

which corresponds to the Stoner instability in different
channels (a combination of momentum and orbital mo-
ment). As q ! 0, the different instabilities can be identi-
fied as different angular momentum channels. In each
channel �q grows linearly for small q (as magnetization

is a conserved order parameter), saturates at the value�max

at qmax, and vanishes for q > qcut (see Fig. 4).
Discussion.—The growth rates of the pairing instability

�BCS
q¼0 and the ferromagnetic instabilities in the various

channels �FM
max are compared across the Feshbach reso-

nance in Fig. 1. We see that (a) the Cooperon suppresses
the growth rate of the ferromagnetic instability but does not
eliminate it, (b) the pairing and ferromagnetic instabilities
compete over a wide range of interaction strength on both
sides of the resonance, and (c) the pairing instability is
always dominant. Our results suggest that even if there
is a metastable ferromagnetic state [14], it probably cannot
be reached dynamically starting from a balanced gas. On
short time scales�ð�FM

maxÞ�1 � ð�BCS
q¼0Þ�1, both pairing and

magnetic correlations develop.
For the finite rate ramp, we should integrate the instan-

taneous instability rate [15] (i.e., for the order parameter

�qðtÞ we must solve _�qðtÞ ¼ �qðtÞ�ðtÞ). As the pairing
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FIG. 3 (color online). Vertex function � and Cooperon C: solid
lines represent fermions, dashed lines interactions, gray lines
external legs, and wavy lines sources.

FIG. 2 (color online). Pairing instability. (a) ‘‘Binding energy’’
of a Feshbach molecule in vacuum and in the presence of a Fermi
sea (relative to 2�F) as a function of interaction strength,
corresponding to the real part of the T matrix pole frequency
�q¼0 ¼ Re½!q¼0�. The kink occurs when the pair becomes

stable. (b) Pairing rate vs momentum for various values of
kFa. q ¼ 0 is always most unstable wave vector. (c) Pairing
rate and (d) rate (in time) of change of kinetic energy vs
interaction strength for the BEC side for various temperatures
[T ¼ 0 (purple, solid), 0.12, 0.22, 0.5, 0.66, 0:75TF (red,
dashed)]. Temperature is more effective at suppressing pair
production at larger values of kfa as the binding energy is

smaller, thus the peaks in (c) and (d) become sharper at higher
temperatures.
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instability always dominates the qualitative results will
not be affected.

Comparison with experiment.—We underline that the
experimentally measured atom loss rate is not the loss
rate of atoms out of the trap but instead the loss rate to
pair formation. The lack of experimental observation of
ferromagnetic domain structures together with the obser-
vation of pairing supports our qualitative conclusion that
the pairing instability prevails over the Ferromagnetic in-
stability. Quantitatively, the maximum of the pairing insta-
bility in the vicinity of kFa � 2 but not the onset of the
Stoner instability at kFa � 1 matches the location of
the ‘‘transition’’ found experimentally [11]. The shape of
the pairing rate curve [see Fig. 2(c)], especially at higher
temperatures, looks qualitatively similar to the atom loss
rate found experimentally at lower temperatures [19].

A fast ramp down of the magnetic field was used to
convert weakly boundmolecules into strongly boundmole-
cules. The kinetic energy of the remaining atoms was
measured and showed a minimum at kFa � 2 [11], which
can be qualitatively understood within our analysis of the
pairing instability. The energy of eachmolecule produced is
given by �Re½!q� [see Fig. 2(a)]. The molecular energy

corresponds to the kinetic energy of the fermions removed
from the Fermi sea, measured with respect to the
Fermi energy. Thus the rate of kinetic energy change of
‘‘unpaired’’ atoms is �ðRe½!q� � 2�FÞ Im½!q¼0� [see

Fig. 2(d)]. The location of the minimum in the kinetic en-
ergy and maximum in the pairing rate agree with Ref. [11].
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FIG. 4 (color online). Stoner instability. (a) Growth rate of the
most unstable mode �q as a function of wave vector q for T ¼ 0

and 1=kFa ¼ 0:85 (top line), 0.86, 0.87, . . ., 0.93 (bottom line).
(b) The most unstable wave vector qmax (blue) and the corre-
sponding growth rate�max (red) vs 1=kFa. A fit to the mean-field
critical theory (� ¼ 1=2, z ¼ 3) is shown with black lines [20].
(c) Details of the critical behavior of qmax and �max as a function
of distance from the transition point u ¼ ð1=kFaÞc � ð1=kFaÞ,
ð1=kFaÞc � 0:94.
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