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Hilbert space combines the properties of two different types of mathematical spaces: vector space and

metric space. While the vector-space aspects are widely used, the metric-space aspects are much less

exploited. Here we show that a suitable metric stratifies Fock space into concentric spheres on which

maximum and minimum distances between states can be defined and geometrically interpreted. Unlike the

usual Hilbert-space analysis, our results apply also to the reduced space of only ground states and to that

of particle densities, which are metric, but not Hilbert, spaces. The Hohenberg-Kohn mapping between

densities and ground states, which is highly complex and nonlocal in coordinate description, is found, for

three different model systems, to be simple in metric space, where it becomes a monotonic and nearly

linear mapping of vicinities onto vicinities.
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It is a fundamental tenet of quantum mechanics that the
space of the proper wave functions of an N-particle quan-
tum system is a Hilbert space: a complete vector space
of (complex) functions among which a scalar product is
defined [1]. Mathematically, a Hilbert space combines the
properties of two fundamentally different types of spaces:
a vector space and a metric space. In short, a vector space
is one in which linear combinations of its elements can be
formed, while a metric space is one in which to each two
elements one can assign a distance.

The vector-space aspects of Hilbert space are widely
known, and routinely exploited in quantum mechanics.
Wave functions are added, and multiplied by real or com-
plex numbers, to form new wave functions, and the degree
of similarity of two wave functions is measured by their
overlap, which in turn is obtained from their scalar product.
Much less exploited in quantum mechanics are the metric-
space aspects of Hilbert space. In the present Letter we
explore the space of quantum-mechanical wave functions
from the point of view of metric spaces, in which the
similarity of two wave functions is characterized by a
suitable metric (a measure of distance [2]).

Our analysis reveals several deep and useful properties
of wave functions that are obfuscated by the more common
analysis in terms of vector spaces and scalar products.
Notably, ground-state (GS) wave functions on their own
do not form a Hilbert space, while they still do form a
metric space. Similarly, particle densities do not form a
Hilbert space but another metric space. (These affirmations
are explained and proven below.) The characterization of
the set of GS wave functions and densities as metric spaces
also provides a new perspective on the Hohenberg-Kohn
one-to-one mapping between GS wave functions and their
densities.

This Letter has three parts. In the first part we describe
the geometry of the space of wave functions and their
densities from the viewpoint of metric space. In the second
part we focus on the special case of GS wave functions. In
the last part we present results from numerical investiga-
tions of three model systems, illustrating and corroborating
our analytical considerations.
1. Geometry of the space of wave functions and their

densities.—We adopt the convention that the N-particle
wave function is normalized to the total particle number
[3] and define the distance between any two N-particle
wave functions as

Dc ðc 1; c 2Þ ¼ min
�

~Dc ðc 1; c 2Þ (1)

¼ min
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
jc 1ðxÞ � c 2ðxÞj2dx

s
(2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
ðjc 1j2 þ jc 2j2Þdx� 2

��������
Z

c �
1c 2dx

��������

s
: (3)

where x ¼ ðx1; . . . ; xNÞ represents spatial and spin
coordinates, in any dimensionality, and the phase � is
defined through

R
c �

1c 2dx ¼ ei�jR c �
1c 2dxj [4].

Such a distance has been used for wave functions pre-
viously [5] and can be identified as a special case of the
Bures distance [6] applied to pure states [7]. In particular,
the triangular inequality

Dc ðc 1; c 2Þ � Dc ðc 1; c 3Þ þDc ðc 3; c 2Þ (4)

is satisfied, and the space of all wave functions, with this
measure of distance, becomes a metric space [2].
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Wave functions differing only by a constant phase are
assigned distance zero by the metric (2). Without the
minimization over �, the distance between two wave
functions differing only by a constant phase, c 1 and

c 2 ¼ c 1e
i�, would be ~Dc ðc 1; c 2Þ ¼ 2

ffiffiffiffi
N

p j sinð�=2Þj,
which also satisfies the mathematical requirements for a
metric, but as a function of � takes on any value from

0 to 2
ffiffiffiffi
N

p
. The alternative measure of distance ~Dc thus

discriminates between different gauge copies of the same
wave function, which is unphysical.

The density of an N-particle wave function is

�ðxÞ ¼
Z

jc ðx; x2; . . . ; xNÞj2dx2 � � �dxN; (5)

where
R
�ðxÞdx ¼ N. We define the distance between any

two densities as

D�ð�1; �2Þ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j�1ðxÞj2 þ j�2ðxÞj2 � 2�1ðxÞ�2ðxÞ
q

dx;

(6)

which satisfies the triangular inequality

D�ð�1; �2Þ � D�ð�1; �3Þ þD�ð�3; �2Þ: (7)

With this definition, the space of all densities forms a
metric space [2], although densities do not form a vector
space, and much less a Hilbert space.

Definitions (2) and (6) are derived in the standard way
from the characteristic norm of the quantities of interest
and determine the geometry of wave function and density
spaces, without making use of Hilbert-space concepts such
as scalar products or linear combinations. From Eq. (6) it
follows that all densities integrating to the same fixed
number N of particles lie in density space on a sphere of

radius N, centered at the zero-density function �ð0ÞðxÞ � 0,

becauseD�ð�; �ð0ÞÞ ¼ N. Similarly, from Eq. (2) it follows

that all N-particle wave functions lie in wave function

space on spheres of radius
ffiffiffiffi
N

p
centered at the zero-wave-

function c ð0Þ � 0. Both the space of all densities and the
space of all wave functions can thus be visualized as
concentric spheres, i.e., an onion-shell-like geometry, il-
lustrated in Fig. 1. The direct sum of all N-particle Hilbert
spaces is frequently denoted Fock space. From the metric
point of view, Fock space is thus stratified into an infinite
number of concentric spheres, each of which represents
an N-particle metric space.

An upper bound to the maximum distance between
two N-particle densities can be deduced from the normal-
ization together with the triangular inequality (7), by

taking �3 ¼ �ð0Þ:

D�ð�1; �2Þ � D�ð�1; �
ð0ÞÞ þD�ð�ð0Þ; �2Þ ¼ 2N; (8)

which is in agreement with the radius of the sphere being
N. This upper bound is attained in the limiting case of
nonoverlapping densities. This can be seen from Eq. (6) by
noting that �1ðxÞ�2ðxÞ � 0, and that the maximum of the

right-hand side is obtained when �1ðxÞ�2ðxÞ � 0, so that
Dmax

� ¼ R
�1ðxÞdxþ

R
�2ðxÞdx ¼ 2N. Maximally distant

densities are thus found to be nonoverlapping densities.
Interestingly, for wave functions the situation is not that

simple. We can deduce a similar upper bound to the
distance between two N-particle wave functions from the

triangular inequality (4), taking c 3 ¼ c ð0Þ:

Dc ðc 1;c 2Þ�Dc ðc 1;c
ð0ÞÞþDc ðc ð0Þ;c 2Þ¼2

ffiffiffiffi
N

p
; (9)

which is in agreement with the radius of the sphere beingffiffiffiffi
N

p
. However from Eq. (3) it is clear that the maximum

distance between two N-particle wave functions is reached

for nonoverlapping functions, and is
ffiffiffiffiffiffiffi
2N

p
. The upper

bound coming from the triangular inequality is thus not
attained if distances between wave functions are measured
by Dc . By contrast, if measured by the alternative metric
~Dc (which assigns nonzero distance to wave functions

differing by a constant phase), the maximum distance of

2
ffiffiffiffi
N

p
is reached for � ¼ �, i.e., for c and �c .

This situation has a simple geometric interpretation,
illustrated in Fig. 1. Start with some arbitrary wave func-
tion c on the N-particle sphere and call it the north pole.
The distance Dc from the north pole to any wave function

that does not overlap with it is the locus of points on the

sphere at linear distance
ffiffiffiffiffiffiffi
2N

p
. Since the diameter of the

sphere is 2
ffiffiffiffi
N

p
and cos� ¼ ffiffiffiffiffiffiffi

2N
p

=ð2 ffiffiffiffi
N

p Þ implies� ¼ �=4,
this locus is the equator. According to ~Dc , on the other

hand, the wave function that is maximally distant from the
north pole is just�c , i.e., the south pole [8]. The geomet-
rically intuitive interpretation of maximum distance from
the north pole is thus only recovered if gauge copies of the
initial wave function are considered to be distinct wave
functions, which is unphysical. The same characterization
of maximally distant wave functions according to Dc (at

the equator) and maximally distant wave functions accord-
ing to ~Dc (at the south pole) holds for any arbitrary wave

function taken to be the north pole, and repeats itself on
any of the infinite number of concentric spheres in wave
function metric space [9].

FIG. 1. Sketch of the metric spaces for particle densities (left)
and wave functions (right). The onion-shell-like geometry is
explicitly displayed for the particle densities. One set of particle
densities and one of wave functions are presented: their distance
from the reference state—at the north pole—increases with their
labeling index, up to maximum distance.

PRL 106, 050401 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

4 FEBRUARY 2011

050401-2



The minimal distance among wave functions (or den-
sities) with same N is obviously zero. According to
Eqs. (2) and (6) distances between wave functions or
densities with different numbers of particles are not
defined in general. We can, however, define a ‘‘minimal’’
distance as the difference between the radii of the corre-

sponding spheres, i.e. Dmin
� ð�N; �N0 Þ :¼ jN � N0j and

Dmin
c ðc N; c N0 Þ :¼ j ffiffiffiffi

N
p � ffiffiffiffiffiffi

N0p j. In particular, the ‘‘mini-

mal’’ distance between an N and an N þ 1 particle density
is 1 for all N, while that between the corresponding wave

functions is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p � ffiffiffiffi
N

p
, which goes to zero for largeN.

In this sense, densities provide a better resolution for
quantifying distances between large systems than wave
functions, which is a very interesting property in view of
the other advantages densities have over wave functions
for large systems [10].

2. Geometry of the space of ground-state wave func-
tions.—All of the above applies to any proper wave func-
tion of a nonrelativistic N-body quantum system. In the
remainder of this Letter we take a closer look at what may
be the most important subset of wave functions, namely,
those describing ground states.

One key property of a vector space is that it is closed
with respect to any possible linear combination, i.e., its
elements can be summed, and multiplied by scalars, and
the result of these operations is still an element of the same
space. This property is fundamental for quantum mechan-
ics, where linear combinations of wave functions abound.
We note, however, that ground-state wave functions on
their own do not satisfy this requirement: the sum of two
GS wave functions is guaranteed to be another wave func-
tion, but not necessarily another GS wave function. Hence,
the set of all GS wave functions is not a vector space,
much less a Hilbert space. Nevertheless, it is still a metric
space, and all of our above considerations apply just as
well when restricted to ground states even if degenerate.

The metric-space viewpoint also sheds new light on
the famous mapping between GS wave functions and
their densities, whose existence is the content of the
Hohenberg-Kohn (HK) theorem [11]. Since GS wave func-
tions by themselves do not form a Hilbert space, this map-
ping can be considered as one between mere sets, i.e.,
structureless collections of objects. We have just seen,
however, that both GS wave functions and densities form
spaces with a metric structure. This metric structure can be
used to further analyze the density-wave function mapping.

By Eq. (5), a wave function uniquely determines its
density. The inverse is much less trivial, and actually is
the content of the HK theorem: to each GS density corre-
sponds a unique GS wave function in Eq. (5). Since any
metricDðx; yÞ satisfiesDðx; yÞ ¼ 0 , x ¼ y, the HK theo-
rem implies that GS wave functions with nonzero distance
are mapped onto densities with nonzero distance.

Because of the enormous complexity of the HK c � �
mapping (which is highly nonlinear and nonlocal in coor-
dinate description) and the endless variety of possible

functions it connects, analytical results on the geometry
and topology of the mapping are very hard to obtain.
However, further progress can be made by numerical
calculations for model systems.
3. Numerical calculations—In this last part of the Letter

we consider three different nontrivial model systems, taken
from different realms of quantum mechanics: the one-
dimensional Hubbard model, the Helium isoelectronic
series, and a parabolically confined two-electron system
(sometimes known as Hooke’s atom). For each of these we
calculate numerically highly precise or analytical GS wave
functions and densities, and investigate how a change from
one wave function to another affects the corresponding
densities. To this end we adopt one or few states of each
system as a reference state and then vary some system
parameters (atomic number Z for the He atom, the fre-
quency ! of the confining potential for parabolic confine-
ment, and the frequency ! of the confining potential
for different particle numbers N and interactions U for
the Hubbard model). This variation produces paths on the
respective metric spheres, i.e., families of GS wave func-
tions and densities, the distance of which from the refer-
ence states we quantify by the respective metrics. We then
calculateD� as a function ofDc , as the system parameters

are varied (see Fig. 2).
The HK theorem guarantees that the graph of D� as a

function of Dc starts with positive slope at the origin

(where Dc ¼ D� ¼ 0) and then never reaches the hori-

zontal (Dc ) axis again. For nonzeroDc , the curves display

various additional remarkable features that are not auto-
matic consequences of the HK theorem.
First, in all investigated systems the initial slope is� 45

degrees, because the density is an integrated functional
of the wave function, and as such D� should be affected

at most as much as Dc by a small change in the wave

function. Also, the slope remains positive for the entire
range of Dc , i.e., all curves increase monotonically. At

least for these three systems, the HK mapping thus con-
sistently maps nearby densities onto nearby wave func-
tions, and distant densities onto distant wave functions.
Second, after starting at the origin, the density distance

does not only increase monotonically as a function of the
wave function distance, but even almost linearly. In this
sense, the HK mapping is as simple as it could be: an
increase in the distance between two densities is followed
by a proportional increase in the distance between the two
wave functions associated with the densities via the HK
theorem. This near linearity has apparently not been noted,
and much less exploited, in the literature on density-
functional theory or on quantum mechanics.
Third, this linearity persists up to values of Dc that are

close to the maximum possible distance of
ffiffiffiffiffiffiffi
2N

p
, derived

above. Only for wave functions that are close to maxi-
mally distant (i.e., nearly nonoverlapping, according to our
above analysis) do the corresponding density distances
depart from linearity and grow rapidly towards their own
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maximum value Dmax
� ¼ 2N. In this region a small in-

crease in the distance between two wave functions can
produce a large increase in the distance between the two
densities. Densities thus appear to be a rather suitable
diagnostic tool for distinguishing wave functions, although
much explicit information contained in the wave functions
is integrated out when calculating the density.

Finally, we note that curves forN ¼ 2 in different model
systems can be almost superimposed onto each other
[see inset of Fig. 2(b)], which hints at universality across
different systems in the shape of the mapping. For larger
N a similar universality is also suggested by the Hubbard
model [Fig. 2(c)], since the mapping is essentially the same
for different interactions.

The metric viewpoint can be applied anywhere in quan-
tum mechanics. It could help, e.g., in testing approximate
density functionals, which should reproduce the near line-
arity of the HK mapping. In variational calculations, the
existence of a suitable measure of distance between wave
functions may complement work such as that of Ref. [12]
and help in choosing better trial functions. Another use is
in the development of order (N) methods for electronic-
structure calculations, as our results show that, for large N,
densities provide better resolution for distinguishing
physical systems than wave functions. Our findings on
the distance between wave functions may complement
the use of the fidelity[13] in quantum information theory
and in the study of quantum phase transitions. In conclu-
sion, we emphasize that the metric and the vector-space
viewpoints are complementary, and that only together do
they exhaust the full richness of Hilbert space.
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FIG. 2. Density distance vs wave function distance.
(a) Helium-like atoms. The reference systems have Z ¼ 3
(circles, decreasing Z) and Z ¼ 2 (triangles for increasing Z
and squares for decreasing Z). (b) Hooke’s atom. The reference
system has ! ¼ 0:5 (triangles for increasing ! and circles for
decreasing !). (c) Hubbard model. The reference system has
! ¼ 4, and is compared with smaller ! systems with 8 sites
and different particle numbers (circles for N ¼ 2, triangles for
N ¼ 4 and squares for N ¼ 8) and interactions (filled symbols
for U ¼ 2 and unfilled for U ¼ 6).
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