
Comment on ‘‘Mode-Coupling Theory as a Mean-Field
Description of the Glass Transition’’

Motivated by the interpretation of mode-coupling theory
(MCT) as a mean-field theory Ikeda and Miyazaki (IM) [1]
and the present authors [2] independently investigated the
dependence of MCT for hard spheres, with diameter � on
the spatial dimension d, particularly in the limit d ! 1. A
comparison with the corresponding results from replica
theory [3] has revealed serious discrepancies between
both theories [1,2]. The long time limit of the self part of

the van Hove function GðsÞ
c;1ðr; dÞ is the Fourier transform

of the critical self-nonergodicity parameter (NEP)

fðsÞc ðk; dÞ:
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(Ad ¼ ð2�Þ�d=2). Taking fðsÞc ðk;dÞ from MCT, IM show

that rd�1GðsÞ
c;1ðr;dÞ has negative dips on a scale r=� ¼

Oð1Þ for d ¼ 4; � � � ; 15, contradicting its non-negativity.
From these results IM conclude that a ‘‘reconsideration and
revision of MCT from ground up is in order.’’ In the
following we will explain why these observations are not
yet sufficient to draw that conclusion.

First we show that the dips in GðsÞ
c;1ðr; dÞ may disappear

for d ! 1. From our numerical approach we have found

that kd=2fðsÞc ðk;dÞ! �gðsÞc ðk;dÞ¼kd=2 exp½�adðk�k0Þ=
ffiffiffi
d

p �
(a1 ffi 1:50�, k0 ffi 0:155��1d3=2) for d ! 1 (see Fig. 1
for d ¼ 100).

The numerical result for GðsÞ
c;1ðr; 100Þ (not shown) ex-

hibits tiny negative dips. However, replacing kd=2fðsÞc ðk;dÞ
in Eq. (1) by �gðsÞc ðk; dÞ for d � 1 one obtains the analytical

resultGðsÞ
c;1ðr;dÞ ! �GðsÞ

c;1ðr; dÞ ¼ Bd=½1þ ðr=adÞ2d�ðdþ1Þ=2

(0< Bd � dd). Hence GðsÞ
c;1ðr;dÞ becomes non-negative

(and a Gaussian on a scale rd=� ¼ Oð1Þ) for d ! 1.
The same holds for the corresponding collective quantity
Gc;1ðr;dÞ. For d ¼ 100 this also demonstrates that a small

deformation of kd=2fðsÞc ðk;dÞ can already eliminate the

negative dips even for a non-Gaussian fðsÞc ðk; dÞ.
A second comment is inspired by the investigation of a

mean-field �4 model on a lattice with N sites [4]. It has
been shown that a time scale �ðNÞ � N exists. The dynam-
ics is nonergodic for t � �ðNÞ and ergodic for t � �ðNÞ
for all temperatures [4]. In case that such a diverging time
scale �ðdÞ would exist for a d-dimensional liquid, as well,
both limits t ! 1 and d ! 1 would not commute. This
would suggest that we investigate, e.g., the self-correlator

SðsÞ in a more general scaling limit ŜðsÞðk̂; t̂; ’̂Þ ¼
limd!1SðsÞðd�k̂=�; d�t̂; d�2�d’̂;dÞ with appropriate scal-
ing exponents �, � and �. This has not been done so far.
In Refs. [1,2], where � ¼ 0 is assumed the limit t ! 1 has
been taken first for large but finite d.

The non-negativity of GðsÞ
c;1ðr; dÞ and Gc;1ðr; dÞ for d !

1 does not imply that MCT becomes exact for d ! 1. If it
would turn out that MCT does not become exact for d ! 1
this would imply that MCT is not a mean-field theory, at
least in the conventional sense. This holds indeed for the
�4 model with � ¼ 0 [4]. Concerning d ¼ Oð1Þ, we fully
agree with the existence of negative dips in rd�1GðsÞ

c;1ðr;dÞ.
Of course, one has to take into account that they are already
strongly enhanced for d ¼ 15 due to the factor rd�1 in-
cluded by IM. Using PY theory we found that they also

exist in d ¼ 2 and 3 for GðsÞ
c;1ðr; dÞ but not for Gc;1ðr;dÞ.

Because of the nonlinear structure of MCT equations this
is not surprising and does not seem to affect the quality of
MCT successfully tested particularly for three-dimensional
liquids during more than two decades. Of course, a deeper
insight, based on the removal of the negative dips or not,
why MCT is so powerful in d ¼ 3 and even d ¼ 2 and
whether it is a kind of mean-field theory or not is highly
desirable.
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FIG. 1 (color online). k dependence of ðk�=dÞd=2fðsÞc ðk; dÞ
(solid line) from the numerical MCT solution and

ð�=dÞd=2 �gðsÞc ðk; dÞ (dashed line) for d ¼ 100.
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