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We find that watersheds in real and artificial landscapes can be strongly affected by small, local

perturbations like landslides or tectonic motions. We observe power-law scaling behavior for both the

distribution of areas enclosed by the original and the displaced watershed as well as the probability density

to induce, after perturbation, a change at a given distance. Scaling exponents for real and artificial

landscapes are determined, where in the latter case the exponents depend linearly on the Hurst exponent of

the applied fractional Brownian noise. The obtained power laws are shown to be independent on the

strength of perturbation. Theoretical arguments relate our scaling laws for uncorrelated landscapes to

properties of invasion percolation.
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Watersheds are the lines separating adjacent drainage
basins (catchments) and, hence, play a fundamental role in
water management [1], landslides [2,3], and flood preven-
tion [3,4]. Since ancient times, watersheds have been used
to delimit boundaries and have already become issues in
disputes between countries [5]. Moreover, similar prob-
lems also appear in other areas such as image processing
and medicine [6], which shows the generality and impor-
tance to fully understand the subtle dynamical properties
of watersheds. But how sensitive are watersheds to slight
localized modifications of the landscapes? Can these per-
turbations produce large, nonlocal changes in the water-
shed? Geographers and geomorphologists have studied the
evolution of watersheds in time and found it to be driven by
local events called stream capture. These events can affect
the biogeography [7], and occur due to erosion, natural
damming, tectonic motion, as well as volcanic activity
[8–11]. Recently, the associated relevant mechanisms
were investigated numerically and in small scale experi-
ments [12]. Finally, the problem studied here is also of
interest to image processing, in order to circumvent seg-
mentation failure [13].

In this Letter we investigate the effects of topological
modifications like landslides or tectonic motion on the
watershed. In fact, we show that the same type of topo-
logical perturbation can indeed trigger nonlocal effects of
any length scale, i.e., following power-law distributions.
For illustration, as shown in Fig. 1, we obtain after a local
height change of less than 2 m at a location (cross) close to
the Kashabowie Provincial Park, some kilometers north of
the US-Canadian border, a substantial displacement in the
watershed [dark (blue) line], which encloses together with
the original watershed [light (red) line] an area A�
3730 km2. Here a model is developed to provide a quali-
tative and quantitative description of this phenomenon.

In our simulations, we use real and artificial landscapes
in the form of digital elevation maps (DEM), consisting of

discretized elevation fields. Here we call sites to the dis-
cretization units, defined as the square areas with a size
given by the DEM resolution. The watershed is the line
dividing the entire landscape into two parts. Each part
drains, according to the steepest descent along the coor-
dinate directions, to either one of a chosen pair of opposite
boundaries (east-west or north-south) of the DEM. For the
determination of this line we use an iterative application of
an invasion percolation procedure (IP) [14]. For a given
landscape, as shown in Fig. 1, we initially determine its
watershed [light (red) line]. Then a local event is induced
by changing the height hk ! hk þ � at a single site k
[cross in Fig. 1] of the DEM, where � is the perturbation
strength. Since we are interested in the nonlocal features
of the watershed response to local perturbations, we only

FIG. 1 (color online). Example of the watershed between the
US and Canada, close to the big lakes [light (red) line]. Also
shown is the resulting change in the watershed [dark (blue) line]
due to a perturbation of 2 m at a spot (cross) close to the border,
near Thunder Bay. The watershed displacement encloses an
area of about 3730 km2. The dot marks the new outlet of
the area after perturbation. The inset shows the same area on a
larger scale.
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perturb sites that are not on the watershed. This implies
�> 0 to induce changes in the watershed [dark (blue)
line]. The displacement of the watershed is quantified by
measuring the area A between the original and the per-
turbed watershed. By definition, the water can only escape
from the displacement area through a single site, which
we call outlet. The old outlet (o outlet) before perturbation
always coincides with the perturbed site k. After perturba-
tion, k becomes part of the new watershed and the water
escapes through a new outlet (n outlet), which is located at
the original watershed. After measuring the area A and the
distance R between the old and new outlets, we proceed by
restoring the original landscape; i.e., the height at k is reset
to its initial value. This procedure is repeated for every site
k of the landscape, except those located at the original
watershed. Initially, we fix � equal to hw ¼ jhmax � hminj,
i.e., the height difference between the lowest hmin and
highest height hmax of the landscape, which corresponds
to a perturbation of infinite strength for the landscape under
investigation. With this choice all possible changes are
obtained within the DEM. In all definitions hereafter, we
consider only those perturbations leading to a displacement
of the watershed. In what follows, we study the distribution
PðAÞ of the areas A, the probability distribution PðRÞ of
the Euclidean distance R between the two outlets, and
the dependence between A and R. For this, we define the
average area hAi and the distribution PðAjRÞ of areas A
associated with an outlet distance R.

First, we study several natural landscapes, from moun-
tainous (e.g., Rocky Mountains) to rather flat landscapes
(e.g., US-Canada, Kongo, and Germany). All DEM data
were obtained from the SRTM-project [15], where for each
set we used a size of 2700 km� 2700 km (with the ex-
ception of 1080 km� 1080 km for Germany), and a reso-
lution of 540 m, defining the size of a site. Hence, the
physical size of the 8 data sets are large enough, so that
finite-size effects emerging from the DEM boundaries
could not be detected. As shown in Fig. 2, we find the
distribution of areas to follow a power law, PðAÞ � A��,
with � ¼ 1:65� 0:15 for all landscapes. The probability
distribution PðRÞ of outlet distances R also obeys a power
law, PðRÞ � R��, with � ¼ 3:1� 0:3 � 2� [see Fig. SM1
in [16]], and displays an upper cutoff in the range 50 km<
R< 500 km for the studied landscapes. This cutoff is
independent on the resolution and could be due to a
length scale arising from tectonics. The value of � implies
hAi � R2, which agrees well with our data [inset of
Fig. 2]. The distribution for a given distance R scales as
PðAjRÞ � A�� with � ¼ 2:3� 0:2 [see Fig. SM1 in [16]].

In order to understand these power laws and the depen-
dence between A and R, we study artificial landscapes,
where the local heights are generated using fractional
Brownian motion (fBm) on a square lattice [17]. This
model incorporates spatial long-range correlations to the
system that are controlled by the Hurst exponent, H.
We first consider the case of uncorrelated landscapes,
which is a special case of the fBm model with H ¼ �1.

In Fig. 3, we present the results obtained for several
system sizes, using the same procedure as for the natural
landscapes. The probability density PðRÞ again follows a
power law PðRÞ / R��, without upper cutoff as in real
landscapes. We estimate � ¼ 2:21� 0:01 using the scal-
ing PðRÞ ¼ L�f½RL�, where L is the linear dimension of
the landscape. For the distribution PðAÞ ¼ L�f½AL2�, we
obtain an excellent data collapse for � ¼ 1:16� 0:03 [see
the inset of Fig. 3]. In the case of the distribution PðAjRÞ
at a fixed outlet distance, we again find a power law
PðAjRÞ � A�� [see Fig. SM2 in [16]]. The finite-size
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FIG. 2 (color online). The distribution PðAÞ is shown for
various regions: Rocky Mountains, Andes, and Appalachian
(unshifted); Brazil and Europe (shifted by a factor of 102 for
better visibility); and US-Canada, Kongo, and Germany (shifted
by 104). All data sets have a resolution of 540 m. The solid line
shows the fit to the Andes data with a power law of exponent
�1:65� 0:15. The inset shows hAi as function of R for the
Rocky Mountains at resolutions of 270 m (squares), 540 m
(circles), and 1350 m (triangles). The solid line has slope 2.
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FIG. 3 (color online). Data collapse of the distribution PðRÞ
for uncorrelated landscapes (H ¼ �1) of three different system
sizes L ¼ 129, 257, and 513 (triangles, circles, and squares,
respectively). The line represents a power-law fit to the data for
the largest landscape (squares) revealing an exponent � ¼
2:21� 0:01. The inset shows the distribution PðAÞ of the areas
for the same system sizes. The line represents a power-law fit to
the data with exponent � ¼ 1:16� 0:03.
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scaling analysis yields an exponent � ¼ 2:23� 0:03 inde-
pendent of the value of R. Assuming that R describes the
extension of A in every direction, the relation � ¼ � is
reasonable. This is even well supported by the similarity of
the obtained exponents. The area A was rescaled by L2,
indicating that the areas are compact. Considering finite-
size scaling, our data are consistent with hAi � R2 [see
Fig. SM2 in [16]]. Furthermore, the compactness of the
areas is supported by the measured value� ¼ 1:16� 0:03,
which agrees well with the relation � ¼ �=2 � 1:11.

In the following, we show that we can match the ex-
ponents quantitatively by tuning the Hurst exponent H to
introduce spatial long-range correlations, as present in
real geological systems. The exponents �, �, and � were
calculated for several values ofH [see Fig. 4]. As shown in
Fig. 4, we observe that both � and � increase with H.
Furthermore, the relationship � ¼ �=2 is maintained,
since the areas remain compact in the entire range of H
values. Around H ¼ �0:5, � starts to deviate from � and
for H > 0 we observe � to decrease. Previously, we had
assumed R to reflect the extension of the area, i.e., the
outlets to reside typically on opposite sides of the area. To
check whether this is still valid, we measured the angle �
between the lines connecting the center of mass of the area
with the two outlets. We observe the average angle to
decrease as a function of H [see Fig. 4]. This implies
that, on average, the two outlets approach each other
with increasing H [see also the insets of Fig. 4)], so that
R is no longer representative of the area extension. Finally
we find good quantitative agreement with the exponents
obtained from the natural landscapes, which are known
to have a Hurst exponent inside the range 0:3<H < 0:5

(see Ref. [18] and references therein). Hence, except for
the upper cutoff in R, our model provides an excellent
quantitative description of the effects observed on natural
landscapes.
Next we analyze quantitatively the impact of the pertur-

bation strength � on the watershed. In Fig. 5 the number
of perturbed sites N that change the watershed is shown
for uncorrelated, for artificial correlated (with H ¼ 0:3),
and for natural landscapes (Andes). In all three cases, N is
found to increase linearly with the applied perturbation
strength, N � �. This indicates that changes on the water-
shed can be observed even for infinitesimally small per-
turbations. Additionally, in both cases where correlations
are present, N is observed to reach a plateau. As already
stated, when � is equal to hw, this corresponds to the
largest relevant perturbation, so that NðhwÞ ¼ Nmax � L2

indicates that many perturbations never change the water-
shed at all. It is clear that �> jhj � hij is needed, where
hi and hj are the heights of the outlets of the area.

Therefore, if the distribution poðhÞ of outlet heights is
known, one obtains,

Nð�Þ ¼ 2
Nmax

L2

Z �

0

Z hw

�0
poðhÞpoðh� �0Þdhd�0: (1)

For landscapes with uniformly distributed heights, we find
poðhÞ to be still a uniform distribution. Then we obtain
from Eq. (1), Nð�Þ ¼ ðhw�� �2=2Þ2Nmax=ðL2h2wÞ,
which is in excellent agreement with our data [see
Fig. 5], where an approximately linear behavior can be
observed for �< hw. The observed power laws are main-
tained for all values of �, as can be clearly seen for hAi
in the inset of Fig. 5. We conclude that infinitesimally
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FIG. 4 (color online). The exponents � (squares), � (circles),
and � (triangles) are shown for several values of the Hurst
exponent H. Each point results from a similar study as done
for the uncorrelated landscapes. The exponents for the natural
landscapes (open symbols), all corresponding to Hurst exponent
values in the range 0:3<H < 0:5, are consistent with our
model. The average angle � (in radians) between the outlets
from the center of mass is shown, too (crosses). The insets depict
schematic shapes of the areas and positions of the two outlets for
small (left) and large (right) values of H.
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FIG. 5 (color online). Dependence of the number of perturbed
sites N that promote changes on the watershed on the perturba-
tion strength � applied for uncorrelated (squares), Andes (tri-
angles), and fBm landscape with H ¼ 0:3 (circles). The solid
line corresponds to the analytic relation obtained from Eq. (1) for
uncorrelated landscapes. The inset shows the average area hAi
as a function of the distance R between the outlets for
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respectively), and L ¼ 513.
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small perturbations have qualitatively the same effect
on the watershed as any larger perturbation strength �.

In the case of uncorrelated landscapes (H ¼ �1), for a
given area A, the corresponding invasion percolation clus-
ter is obtained by starting the penetration process from
one outlet to another, always growing along the steepest
descent. The area A can therefore be understood as the
envelope of this IP cluster. From percolation theory, the
fractal dimension of the IP cluster is df ¼ 91=48 in two

dimensions [19], which implies that hAi / M2=df , whereM
is the number of sites (mass) of the cluster. This result is
consistent with our simulations. The size distribution
PðMjRÞ of IP clusters between two sites at a fixed distance

R is known to follow a power law M���
with �� ¼ 1:39

[19]. Note that, for comparison of our results to Araújo
et al. [19], PðMjRÞ needs to be divided by M, as we grow
the IP cluster starting from the outlet at the watershed,
which is always the highest of the M sites of the cluster.

Hence, we expect PðMjRÞ �M�ð��þ1Þ, which is indeed in
good agreement with our data (see Fig. SM3 in [16]).
We can now relate our exponent � of the distribution of
areas at fixed distance to ��, which describes the size
distribution of IP clusters, as PðAjRÞ ¼ PðhAiðMÞjRÞ /
hAi��ðMÞ / M2�=df / PðMjRÞ. We obtain � ¼ df

2ð�� þ 1Þ � 2:266, which is very close to what we measure
(� ¼ 2:23� 0:03). Therefore, we can relate our results
on uncorrelated landscapes to the subcritical point-to-
point invasion percolation process [19] and to the mass
distribution of avalanches that occur during the IP-cluster
growth [20–22].

In summary, we were able to show that small and
localized perturbations can have a large impact on the
shape of watersheds even at very long distances, hence
having a nonlocal effect. The distribution of changes PðAÞ
is found to decrease as a power law with exponent
� ¼ 1:65� 0:15 on all studied real landscapes from
mountainous (e.g., Rocky Mountains) to rather flat (e.g.,
US-Canadian border). By applying perturbations to
model landscapes with long-range correlations, we deter-
mined the dependence of the scaling exponents on the
Hurst exponent, finding good quantitative agreement
with real landscapes, for which 0:3<H < 0:5. The ob-
tained exponents �, �, and � are independent of the
perturbation strength �. For uncorrelated landscapes,
we derived a relation with invasion percolation. It is
known that watersheds [14] on uncorrelated landscapes
are related to ‘‘strands’’ in invasion percolation [23], ran-
dom polymers in strongly disordered media [24], paths on
MSTs [25], the backbone of the optimal path crack [26],
and the cluster perimeter in explosive percolation [27].
Hence, our results can be potentially applied to all these
problems.
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