
Coupled Magnetic Cycloids in Multiferroic TbMnO3 and Eu3=4Y1=4MnO3

Hoyoung Jang,1 J.-S. Lee,1,2 K.-T. Ko,1 W.-S. Noh,1 T. Y. Koo,3 J.-Y. Kim,3 K.-B. Lee,1,3 J.-H. Park,1,3,4,*

C. L. Zhang,5 Sung Baek Kim,6,7 and S.-W. Cheong5,6

1Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea
2NSLS Brookhaven National Laboratory, Upton, NY 11973, USA

3Pohang Acceleration Laboratory, Pohang University of Science and Technology, Pohang 790-784, Korea
4Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Korea

5R-CEM & Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
6l_PEM & Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea

7Advancement for College Education Center, Konyang University, Chungnam 320-711, Korea.
(Received 12 August 2010; published 25 January 2011)

Based on the detailed Mn L2;3-edge x-ray resonant scattering results, we report a new complexity in the

magnetic order of multiferroic orthomangnites, which has been considered as the simple A-type cycloid

order inducing ferroelectricity. The Dzyaloshinskii-Moriya interaction involved in the orthorhombic

distortion brings on F-type canting from the A type, and the ordering type becomes the off-phase

synchronized bc cycloid in TbMnO3 or the tilted antiphase ab cycloid in Eu3=4Y1=4MnO3. The F-type

canting is responsible for the magnetic field-driven multiferroicity to weak ferromagnetism transition.
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The discovery of large magnetoelectric effects in ortho-
manganite TbMnO3 [1] has stimulated tremendous studies
in multiferroicity [2,3], in which ferroelectricity and
magnetism are intimately coupled, due to its great techno-
logical and fundamental importance. The magnetoelectric
effects were found to be greatly enhanced especially in
spiral or cycloid magnetic systems [3–6] and the noncol-
linear cycloid magnetism became one of the most impor-
tant issues in the multiferroicity. The ferroelectricity in the
magnetic cycloid is induced by unidirectional shifts of the
oxygen ions to obtain an energy gain through animating
Dzyaloshinskii-Moriya (DM) interaction [7,8], the so-
called inverse DM interaction [9]. Then the relationship
between the magnetic cycloid and the electric polarization
was explained in the spin current model [10].

TbMnO3, a prototype magnetic cycloid ferroelectric sys-
tem, was reported to display a variety of magnetic and
electric properties [4,11–13]. Below TN � 42 K, the system
has anA-type b sinusoid order, where collinear spins on theb
axis with antiparallel neighboring alignment along the c axis

(A-type) modulate with a wave vector ~q ¼ qb̂ (q� 0:28).
Upon cooling through TC � 28 K, it transits into the A-type
bc-plane spin cycloid (bc cycloid) inducing ferroelectricity

with electric polarization ~P ¼ Pcĉ. The spin chirality is
reversed by switching the polarization [14]. Amagnetic field
~H ¼ Hbb̂ (� 5 T) switches the bc cycloid into the ab-plane

spin cycloid (ab cycloid) with ~P ¼ Paâ [12,15]. The ab
cycloid canbealso realized by changing the rare-earth ions as
in ðEu;YÞMnO3 [16,17] and ðGd;TbÞMnO3 [18]. The sys-
tem also undergoes a first order transition into a weak ferro-

magnet in ~H ¼ Hcĉ (< 12 T) belowTC [12,16], resulting in
intriguing field induced cross controls of magnetization and
electric polarization [16].

The DM interaction was introduced to explain weak
ferromagnetism (FM) in antiferromagnetic (AFM) materi-
als, resulting from uniaxial F-type spin canting due to
structural zigzag-type ligand shifts [7,8]. The weak FM
was observed in orthorhombic A-type AFM LaMnO3 [19],
in which the DM interaction of the zigzag-type shifts in
Mn-O-Mn chains induces the F-type canting. Then the DM
interaction is often considered to originate either the spiral
ferroelectricity or the weak FM in the orthomanganites [2].
However, considering that the orthorhombic perovskite
commonly possesses the zigzag-type shifts, one can
raise fundamental issues on the magnetic structure of the
multiferroic orthomanagnite; how the F-type canting is
integrated into the A-type cycloid and which magnetic
structure results from a combination of the inverse and
ordinary DM interactions. Those are schematically ad-
dressed in a scenario described in Fig. 1.
Let us consider a Mn-O-Mn chain along the c axis with a

transverse oxygen shift ~x ¼ xb̂ as shown in Fig. 1(a). The

superexchange interaction HSE ¼ J ~Si � ~Sj (J > 0) makes

the neighboring Mn spins, Si and Sj, antiparallel (A-type).

The shift ~x induces the DM interaction HDM ¼ ~D � ~Si � ~Sj
through ~D ¼ �~x� r̂ij, where � denotes the spin-orbit cou-

pling constant and r̂ij is a unit vector from Si toSj [2,7–9]. In

theA-type b sinusoidwith ~q ¼ qb̂, all spins lie on the b axis,
and the local magnetic moments can be described by

~mA
i ¼ mA

b cosð ~q � ~riÞb̂, while in the A-type bc and ab
cycloids with the spins in the bc and ab planes, they can

be by ~mA
i ¼ mA

b cosð ~q � ~riÞb̂þmA
c sinð ~q � ~riÞĉ and ~mA

i ¼
mA

b cosð ~q � ~riÞb̂þmA
a sinð ~q � ~riÞâ, respectively [14]. The

zigzag type shifts ~x ¼ �xb̂ yield ~D ¼ �Dâ. HDM acts
only onmA

b andmA
c , and contributes the F-type spin canting
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to the c and b directions, respectively, but not on mA
a , i.e.,

mA
b ! mF

c , m
A
c ! �mF

b , m
A
a ! 0. Then, the F-type order

due to the spin canting is predicted to be the c sinusoid
~mF
i ¼ mF

c cosð ~q � ~riÞĉ [Fig. 1(b)] or the bc cycloid

~mF
i ¼ �mF

b sinð ~q � ~riÞb̂þmF
c cosð ~q � ~riÞĉ [Fig. 1(c)] for

the A-type b sinusoid or bc cycloid, respectively. For the
A-type ab cycloid, the F-type order is the c sinusoid ~mF

i ¼
mF

c cosð ~q � ~riÞĉ [Fig. 1(d)] since mA
a ! 0. It is noticeable

that the F type is synchronized to the A type with the same

~qð¼ qb̂Þ and chirality. Then, in the A-type bc cycloid
case [Fig. 1(e)], the net spin structure becomes the off-phase
synchronized cycloid with the phase difference between the
c-axis neighboring spins changing from� to�� 2� due to
the unidirectional F-type canting angle � of tan� �
jDj=2J. In the A-type ab cycloid case [Fig. 1(f)], it becomes
the tilted antiphase cycloid with the cycloid planes tilted
by��.

To examine the scenario, we scrutinized the F-type
orders using the Mn L2;3-edge (2p ! 3d) x-ray resonant

scattering (XRS) in full combinations of the scattering
geometry and the in-coming photon polarization at the
2A beam line in Pohang Light Source [20]. TbMnO3

(A-type bc cycloid) and Eu3=4Y1=4MnO3 (A-type ab cy-

cloid) single crystals were grown by a floating zone method
[4,16]. After being cut along the (010) plane and polished,

the crystals were annealed for the surface recovery. ~P

and the chirality ~C ¼ P ~Sn � ~Snþ1 were reversed above
TN ( � 50 K) by an electric field (� �1 kV=mm) along ĉ

for TbMnO3 ( ~P ¼ �Pcĉ) and along â for Eu3=4Y1=4MnO3

( ~P ¼ �Paâ) [14]. After field cooling, XRS measurements
were performed with warming at given temperatures main-
tained within 0.1 K. In the MnK-edge (1s ! 4p) XRS, the
F-type (0 4� q 0) reflection peak appeared at the same q
as the A-type (0 4� q 1) one. However, it is rather vague
due to its weak intensity, about 2 orders of magnitude
smaller than that of the A type [21], and its origin has
been disputed [22]. On the other hand, such small intensity
is consistent with the small F-type ordered moment by the
spin canting. The Mn L2;3-edge XRS, which directly ac-

cesses the magnetic 3d states, enhances the reflection by
roughly 4 orders of magnitude and enables us to make full
investigations on the F-type behaviors.
Figure 2 shows the experimental geometry and the

Mn L2;3-edge XRS energy profile of the F-type (0 q 0)

reflection for TbMnO3 (q � 0:28) and Eu3=4Y1=4MnO3

(q � 0:25) at 10 K in comparison with the x-ray absorption
spectra, which display the clean Mn3þ one to verify the
surface quality. Both q values slightly increase above TC

[21]. The energy profile exhibits a nearly identical line
shape for both systems without noticeable temperature
dependence. The k scan shown in the inset clearly displays
the reflection peak. Its coherence length, extracted from the
peak width, is about the same as that of the A type [21],
implying that both A and F types may originate from a
single magnetic order. The elliptically polarized undulator
beam line enables us to perform the XRSmeasurements for
four different photon polarizations, the vertical (�) and
planar (�) linear and the right (R) and left (L) circular,
without change in the geometry.

FIG. 1 (color online). (a) Spin canting by the DM interaction
inducing F-type componentsmF

c andmF
b from the A-typemA

b and

mA
c , respectively. (b)–(d) Induced F-type c sinusoid, bc cycloid,

and c sinusoid for the A-type b sinusoid, bc cycloid, and ab
cycloid, respectively. Resulting net spin stuctures; (e) off-phase
synchronized cycloid and (f) tilted antiphase cycloid.
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FIG. 2 (color online). (a) Scattering geometries on the bc and
ab planes. (b) XRS energy profiles compared with the x-ray
absorption spectra of TbMnO3 and Eu3=4Y1=4MnO3. The inset

shows the F-type reflection peaks (h� ¼ 653 eV) along (0 k 0).
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The predicted F-type order, either the cycloid or the
sinusoid, can be directly examined in XRS by using the
circularly polarized light. As demonstrated previously
[23], the XRS intensity for the magnetic cycloid varies
with the incoming photon helicity vector parallel or

antiparallel to the chirality ~C to yield circular dichoism.
Indeed, XRS in the ab-plane scattering exhibits large
circular dichroism at the F-type reflection for TbMnO3

(A-type bc cycloid) at 10 K (< TC) as shown

in Fig. 3(a). The dichroism is reversed with ~P switching
(� Pcĉ), which accompanies chirality reversal of the
A-type cycloid [14], meaning the simultaneous chirality
reversal (synchronized coupling) of the A-type and F-type
cycloids. The dichroism gradually reduces upon heating
and vanishes above TC although the F-type signal still
survives up to TN � 42 K as shown in Fig. 3(b) [24]. No
dichroism, however, was observed in the bc-plane scatter-
ing even below TC [21], meaning mF

a ’ 0. These results
manifest that the F type is the noncollinear bc cycloid
below TC with the chirality reversal and becomes the col-
linear c sinusoid above TC up to TN , in contrast to a recent

proposal [26] that the F type is sinusoidal below TC

(see Ref. [25]). Meanwhile in Eu3=4Y1=4MnO3 (A-type
ab cycloid), the F-type reflection does not show any con-
siderable circular dichroism, regardless of the scattering
plane as shown in Fig. 3(c), proving that the F type is
sinusoidal even below TC. It is worth noting that all the
observed F-type orders agree with the magnetic symmetry
arguments, which can be described in the irreducible rep-

resentations for the propagation vector ~Gk ¼ ð0; k; 0Þ in the
space group Pbnm of theGdFeO3-type distorted orthoman-
ganites [27]. Further, the representations show that the
system also allows the G- and C-type orders [21] and
suggest that the true spin structure can be a multifaced
structure displaying different types of the ordering struc-
ture, possibly observed at different reflections [11].
The cycloid order can be examined by the XRS circular

dichroism, but XRS with linearly (� and �) polarized
light is necessary for quantitative analysis of the ordered
magnetic moment. Figure 4 shows the ab-plane scattering
results. In TbMnO3, the F-type reflection yields signifi-
cantly enhanced Ið�Þ but negligible Ið�Þ at
T ¼ 30 K (> TC), while at T ¼ 10 K (< TC), both Ið�Þ
and Ið�Þ are finite. In Eu3=4Y1=4MnO3, it shows large Ið�Þ
but no Ið�Þ both above and below TC. Such intensity
variations can be explained by the magnetic scattering
amplitude for the electric dipole transition [28,29].

In the ab-plane scattering for a modulated ( ~q ¼ qb̂)

magnetic order with the chirality Ĉ ¼ �â and scattering
angle �, the magnetic scattering intensities Ið�Þ, Ið�Þ,
IðRÞ, and IðLÞ for the respective photon polarizations �,
�, R, and L can be represented as [30]

Ið�Þ ¼ m2
acos

2�þm2
bsin

2�;

Ið�Þ ¼ m2
acos

2�þm2
bsin

2�þm2
csin

22�;

IðRÞ ¼ ðIð�Þ þ Ið�ÞÞ=2�mbmc sin� sin2�;

IðLÞ ¼ ðIð�Þ þ Ið�ÞÞ=2�mbmc sin� sin2�:

Here ma, mb, and mc are the a-, b-, and c-axis maximum
components of the local magnetic moment, respectively.
Above TC, the F type in TbMnO3 is the c sinusoid,
~mF
i ¼ mF

c cosð ~q � ~riÞĉ, which yields finite Ið�Þ but no

Ið�Þ. Below TC, the bc cycloid, ~mF
i ¼ �mF

b sinð ~q � ~riÞb̂þ
mF

c cosð ~q � ~riÞĉ yields finite Ið�Þ and Ið�Þ. With
� � 27�, the ratio mF

b=m
F
c is estimated to be about 0.7,

simply inverse to that in the A-type bc cycloid [14], i.e.,
mF

b=m
F
c � mA

c =m
A
b (ellipticity reversal). These results ab-

solutely agree with the scenario for the F-type spin

canting driven by the DM interaction of ~D ¼ �Dâ, which
makes contributions of mA

b ! mF
c and mA

c ! �mF
b . The

temperature dependence of both mF
b and mF

c , extracted

from Ið�Þ and Ið�Þ, agrees well with the simple power

law ðTN � TÞ1=2.mF
b=m

F
c � 0:7 also reproduces the depen-

dence for IðRÞ and IðLÞ [see Fig. 3(b)]. In Eu3=4Y1=4MnO3

with mA
a and mA

b , the F type maintains the c sinusoid even

below TC sincemA
a ! 0 andmA

b ! mF
c . Thus XRS shows a

FIG. 3 (color online). (a)IðLÞ and IðRÞ along (0 k 0) in the
ab-plane scattering at h� ¼ 653 eV for E fields ~EA ¼ �Ecĉ,
and (b) temperature dependence of IðLÞ and IðRÞ compared with
calculations (solid lines) by using mF

b and mF
c in Fig. 4(c) and of

IðLÞ � IðRÞ of TbMnO3. (c) IðLÞ and IðRÞ along (0 k 0) in the
bc- and ab-plane scattering of Eu3=4Y1=4MnO3.
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finite intensity only for Ið�Þ, and jmF
c j2 is roughly propor-

tional to Ið�Þ [see Fig. 4(e)]. We also note that in the
bc-plane scattering, the F-type reflection has nearly the
same intensity for Ið�Þ, Ið�Þ, IðRÞ, and IðLÞ in both
systems above and below TC [21], confirming that the F

type involves ~D ¼ �Dâ and mF
a ¼ 0.

Considering that the shifts ~x ¼ �xb̂ inducing the F type
originate the weak FM in the collinear A-type AFM
LaMnO3 [19], one expects that the weak FM can be also
realized in the multiferroic orthomanganites when
the cycloid is released, similar to a field-driven spin struc-
ture transition in BiFeO3 [31]. Indeed, a sufficiently large
~H ¼ Hcĉ derives a first order unwinding transition into the
weak FM state in TbMnO3 [12] and Eu3=4Y1=4MnO3 [16],

where the collinear A-type AFM order is stabilized and the
ferroelectricity disappears. The respective ferromagnetic
moments are obtained to be 0:27� 0:02�B=Mn and
0:18� 0:02�B=Mn at 10 K [21], which are slightly larger
than and comparable to 0:18�B=Mn for LaMnO3 [19]. The
first order-type hysteresis behavior at the transition implies
possible coexistence of the competing two phases, and the
F type makes the field-induced cross controls of ferroelec-
tricity and ferromagnetism possible [16].

In summary, we clarified the F-type magnetic orders
coupled to the A-type ones in multiferroic orthomanganites
using the Mn L2;3-edge XRS studies. The F type induced

by the DM interaction is either a cycloid or sinusoid,
resulting in novel spin structures.
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