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The thermal conductivity of disordered silicon-germanium alloys is computed from density-functional

perturbation theory and with relaxation times that include both harmonic and anharmonic scattering terms.

We show that this approach yields an excellent agreement at all compositions with experimental results

and provides clear design rules for the engineering of nanostructured thermoelectrics. For SixGe1�x, more

than 50% of the heat is carried at room temperature by phonons of mean free path greater than 1 �m, and

an addition of as little as 12% Ge is sufficient to reduce the thermal conductivity to the minimum value

achievable through alloying. Intriguingly, mass disorder is found to increase the anharmonic scattering of

phonons through a modification of their vibration eigenmodes, resulting in an increase of 15% in thermal

resistivity.

DOI: 10.1103/PhysRevLett.106.045901 PACS numbers: 66.70.�f, 63.20.dk, 63.20.kg, 63.50.Gh

The energy conversion efficiency of a thermoelectric
device is often characterized by the dimensionless figure
of merit ZT ¼ S2�T=k, where S, �, k, and T are the
Seebeck coefficient, electrical conductivity, thermal con-
ductivity, and temperature, respectively. One of the most
promising avenues to increase ZT beyond �1 has been to
reduce thermal conductivity through enhanced phonon
scattering following alloying, surface roughening, or nano-
structuring [1–3]. While mass disorder plays a key role in
lowering thermal conductivity in important thermoelectric
materials such as half-Heusler alloys [4] and silicon-
germanium alloys, an attempt to predict the magnitude of
this effect in SiGe alloys through nonequilibrium molecu-
lar dynamics [5] simulations using the Stillinger-Weber
potential [6] resulted in large discrepancies with measured
values. Furthermore, it is not known what effect, if any,
mass disorder has on anharmonic scattering of phonons.
An understanding of this effect could provide avenues
for optimizing it to increase ZT by further lowering the
thermal conductivity. In predicting thermal conductivity,
empirical potentials are often used, but these do not nec-
essarily yield the correct thermal conductivity [7] and are
often untested in their anharmonic behavior around equi-
librium. On the other hand, Broido et al. [8] used the
harmonic and anharmonic force constants of Si28 and
Ge70 derived from first principles through the density-
functional perturbation theory [9–11], to compute thermal
conductivities, with excellent agreement between calcu-
lated and measured results.

Abeles [12] first introduced the idea of computing the
thermal conductivity of SiGe alloys by replacing the dis-
ordered crystal with an ordered one and treating both

disorder and anharmonicity as perturbations. In this
phenomenological model the net scattering rate of a pho-
non mode is computed as the sum of the scattering due to
mass disorder and anharmonicity. The former is taken to
be ��1 ¼ !4V0g=ð4�v3Þ, in analogy with the result of
Klemens [13] for point-defect scattering [V0 is the volume
per unit atom, v is the branch-averaged sound velocity,
g ¼ P

ifið1�mi= �mÞ2 is a measure of the mass disorder,
fi and mi are the concentration and the atomic mass of
species i, respectively, and �m is the average mass for the
given composition]. For the latter, the low-frequency limit
of normal (B1!

2) and umklapp (B2!
2) processes is used to

estimate anharmonic scattering. The use of these fitting
parameters provides good agreement with experiments
but also limits the predictive ability of these models.
In this Letter, we present a fully first-principles approach

to compute the thermal conductivity of SiGe alloys with all
parameters derived from the density-functional perturba-
tion theory. Following Ref. [12] we calculate at any com-
position the phonon modes of the virtual crystal (which has
a 2-atom diamond unit cell and lattice parameter, mass, and
force constants appropriate to that particular composition)
and derive from those the frequencies, group velocities,
and populations that enter into the calculation of thermal
conductivity. The force constants and lattice parameter are
interpolated quadratically at any composition using the end
points (pure Si and Ge) and the virtual crystal at x ¼ 0:5,
where the external atomic potential at every lattice site is
given by the average of the Si and Ge pseudopotentials
[14,15]. Finally, we adopt the single-mode relaxation
time approximation [16] as an approximate solution of
the Boltzmann transport equation [17,18]; the thermal
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conductivity k�� (defined by the heat current in the �th

direction for a temperature gradient along the � direction)
is then given by

k�� ¼ @
2

N�kBT
2

X

�

c��c��!
2
�n�ðn� þ 1Þ��; (1)

where � and � are the Cartesian directions, c, !, n, and �
are the phonon group velocities, frequencies, equilibrium
populations, and relaxation times, respectively, � repre-
sents the vibrational mode ðq; jÞ (q is the wave vector and j
the phonon branch), and T, �, and N are the temperature,
cell volume, and size of the q-point mesh, respectively. The
scattering rate 1=�� of a phonon mode � is taken to be the
sum of a term describing harmonic scattering due to mass
disorder (1=��a) and a term describing anharmonic scat-
tering (1=��b) as in Matthiessen’s rule.

The harmonic scattering rates due to mass disorder are
calculated by using perturbation theory [19]:

1

��a
¼ �

2
g!2

�Dð!�Þ; (2)

where g (defined before) takes into account the magnitude
of mass disorder and Dð!Þ is the phonon density of states
(normalized to unity) of the virtual crystal. Though the
expression for harmonic scattering [Eq. (2)] is valid for
small mass disorder, its use leads to good agreement with
experimentally measured phonon linewidths, even in the
case of the Ni0:55Pd0:45 alloy, where the atomic species
are chemically similar but mass disorder is large
(mPd=mNi ¼ 1:812) [20].

The anharmonic scattering rates are computed by using
the lowest-order three-phonon scattering processes in the
single-mode relaxation time approximation via [9,21]

1

��b
¼ �

X

q0;j0;j00
jV3ðj;�q; j0; q0; j00; q00Þj2

� ½ð1þ nj0q0 þ nj00q00 Þ�ð!j0q0 þ!j00q00 �!j;�qÞ
þ 2ðnj00q00 � nj0q0 Þ�ð!j0q0 �!j00q00 �!j;�qÞ�; (3)

where V3ðj;�q; j0; q0; j00; q00Þ are the three-phonon cou-
pling matrix elements [21]. These anharmonic scattering
rates for any composition are computed first by using the
phonon modes of the virtual crystal corresponding to that
composition; later we will also incorporate the effect of
disorder by performing explicit calculations on supercells
with random distributions of Si and Ge masses for the
relevant composition. The 2nd- and 3rd-order interatomic
force constants are obtained on a 10� 10� 10 and 3�
3� 3 supercell, respectively; for all density-functional
perturbation theory calculations a 8� 8� 8 Monkhorst-
Pack [22] mesh is used to sample electronic states in the
Brillouin zone, and an energy cutoff of 20 Ry is used
for the plane-wave expansion. We carefully tested conver-
gence of all measured quantities with respect to these
parameters. First-principles calculations within density-
functional theory are carried out by using the PWSCF and

PHONON codes of the QUANTUM-ESPRESSO distribution [23]

with norm-conserving pseudopotentials based on the ap-
proach of von Barth and Car [24].
The approach outlined above yields an excellent agree-

ment between the computed and measured values at 300 K
[12,25] for the alloy thermal conductivity at all composi-
tions (Fig. 1). Notably, the thermal conductivity is found
to drop sharply after only a small amount of alloying. This
is due to the strong harmonic scattering of phonons even
in the dilute alloy limit. Our approach predicts that in the
composition range 0:2< x< 0:8 the alloy thermal con-
ductivity becomes nearly independent of composition,
in excellent qualitative and quantitative agreement with
experiments.
This low thermal conductivity in SixGe1�x with respect

to pure Si or pure Ge is better understood from the analysis
of the relative contribution of the different scattering
mechanisms. As shown in Fig. 2(a) for Si0:5Ge0:5, thermal
conductivity even at temperatures as high as 500 K is
dominated by phonon modes below 1 THz (at 100, 300,
and 500 K, respectively, 82%, 65%, and 58% of the heat is
conducted by phonons of frequency less than 1 THz, while
13%, 23%, and 27% is conducted by phonons between 1
and 2 THz; optical frequencies for Si and Ge are 15.67 and
9.27 THz, respectively, at the zone center). In pure silicon,
on the other hand, phonon modes up to 6 THz contribute
in similar measures to thermal conductivity [Fig. 2(a)];
harmonic scattering [Fig. 2(b)] completely annihilates the
heat-carrying ability of these higher frequency modes
leading to the observed sudden drop in conductivity.
While disagreement with measured resistivity value [26]

is less than 10% at 300 K for Si0:3Ge0:7, it becomes larger at
higher temperatures [open squares in Fig. 3(a)]. Though the
effect of four-phonon processes has been estimated to be
small [27], we should note that up to now scattering rates
were computed by using the phonon modes of the virtual
crystal, without taking into account the effect of a random
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FIG. 1 (color online). Composition dependence of the thermal
conductivity in SixGe1�x at 300 K. Solid black circles show our
predicted thermal conductivities, to be compared with the
experimental values of Stohr and Klemm (Ref. [25]) and
Abeles (Ref. [12]) (red open squares and blue open diamonds,
respectively).
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distribution of masses. To incorporate this effect, we com-
pute the scattering rates by using large supercells with
explicit random distribution of Si and Ge masses in the
relevant compositions. Figure 4(a) shows that for
Si0:3Ge0:7 the anharmonic phonon relaxation times com-
puted by using a 4� 4� 4 supercell (dashed red line) are
lower by a factor of �2:0 at the smallest frequencies
studied—compared to those obtained by using the virtual
crystal (solid black line)—with the difference diminishing
as the frequency is increased. Using these lower anhar-
monic lifetimes, and continuing to use the other parameters
obtained with the virtual crystal, we find that a good agree-
ment with measured resistivity values is obtained even at
higher temperatures [see Fig. 3(a), open diamond]. On the
other hand, the effect of using real masses is negligible for

harmonic scattering in the low-frequency region, due to
the negligible changes in phonon density of states at low
frequencies [Fig. 4(b)], resulting in minimal changes for
the thermal resistivity [open triangles in Fig. 3(a)].
Mass disorder thus lowers thermal conductivity through

harmonic scattering in the high-frequency region and
by increasing anharmonic scattering at low frequencies.
To understand this latter effect, we perform anharmonic
scattering calculations on a 2� 2� 2 supercell, using
2nd- and 3rd-order force constants for the composition
Si0:3Ge0:7. We compute the values of the three-phonon
anharmonic coupling matrix elements jV3ðj;�q; j0; q0;
j00; q00Þj2 involved in the scattering of a low-frequency
phonon mode ðqjÞ, when the mode ðq0j0Þ is varied over
the entire Brillouin zone. The jV3j2 values are computed
first for the case where all the atoms have an average mass
corresponding to Si0:3Ge0:7 and second with real Si and
Ge masses randomly distributed according to the above
composition. We find that in the first case a large fraction
of channels have negligibly small jV3j2 [Fig. 5(a)], while
in the second case the number of channels with large
jV3j2 increases significantly [Fig. 5(b)], causing the over-
all anharmonic scattering rate to increase by almost a
factor of 2. To explain this increase, we notice that

V3ðj; q; j0; q0; j00; q00Þ �P
		0	00
��0�00

�		0	00
��0�00 ðq; q0; q00Þ~e	�ðjqÞ

~e	
0

�0 ðj0q0Þ~e	00
�00 ðj00q00Þ, where 	 denotes the atoms in the

supercell, � is the Cartesian direction, � is the Fourier
transformed anharmonic force constants, ~e	�ðjqÞ �
e	�ðjqÞ=

ffiffiffiffiffiffiffi
M	

p
, M is the atomic mass, and e’s are the

vibration eigenvectors. Typically, it is found that largest
values of � involve the same atom and vibration along
different Cartesian directions, while other terms are orders
of magnitude smaller. Therefore V3 � 
S, where S ¼
P

	
���0��00

~e	�ðjqÞ~e	�0 ðj0q0Þ~e	�00 ðj00q00Þ. This is confirmed by

the strong correlation between jSj2 [Figs. 5(c) and 5(d)]
and jV3j2 (jSj2 can be thought of as an ‘‘eigenvector over-
lap’’). Since the same anharmonic force constants are used
for both cases of average or random masses, the difference
in V3 originates from the vibration eigenmodes. The small
values of jSj2 [Fig. 5(c)] in the average case indicate a
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FIG. 3 (color online). (a) Temperature dependence of the ther-
mal resistivity; measured values are from Ref. [26]. The open
squares and the open diamonds are the computed values obtained
by using anharmonic relaxation times of the virtual crystal and the
supercell (where disorder is simulated through explicit random
distribution of Si and Ge masses appropriate to Si0:3Ge0:7), re-
spectively. (b) Accumulation of the thermal conductivity for
Si0:5Ge0:5 as a function of the phonon mean free path.
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FIG. 2 (color online). (a) Frequency dependence of the thermal
conductivity (normalized with respect to total thermal conduc-
tivity) for Si0:5Ge0:5 and pure silicon. (b) Scattering rates (full
width at half maximum) due to harmonic scattering (solid line)
and anharmonic scattering (open symbols) in Si0:5Ge0:5. Open
circles, diamonds, and squares are the anharmonic scattering
rates at 100, 300, and 500 K, respectively. Below 0.7 THz, the
mass-disorder scattering rate agrees well with Klemens’ result
for point-defect scattering:��1

�a ¼ 4:43� 10�42 �!4
� sec�1,

where ! is in rad= sec.

PRL 106, 045901 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

28 JANUARY 2011

045901-3



cancellation of terms involved in the summation for S—
due to an even distribution of vibration amplitudes over all
atoms in the system—while a random distribution perturbs
this even distribution, preventing such cancellation.

The predictive power of first-principles calculations al-
lows us to lay out design rules for low thermal conductivity
materials, of central importance for applications in thermo-
electrics. For example, we show that at 300 K [Fig. 3(b)]
most of the heat is conducted by phonons with mean
free paths around 1 �m (60% between 0.2 and 3 �m).
Additional scattering mechanisms introduced by the pres-
ence of grain boundaries or nanoparticles distributed
around these optimal values can thus reduce the phonon
mean free path and the thermal conductivity below the bulk
alloy value. Indeed, Rowe, Shukla, and Savvides [28]
showed that introduction of grain boundaries can reduce
the thermal conductivity of SiGe alloys by as much as
�28%. Similarly, from Fig. 1, it can be seen that addition
of only about 12% Ge to Si is sufficient to lower the
thermal conductivity to the minimum value achievable
in this binary system, of central importance to develop
low-cost thermoelectric devices.

In conclusion, we have presented an approach to com-
pute thermal conductivity of alloys at any composition,
in which all the ingredients—vibrational modes and har-
monic and anharmonic scattering rates—are computed
from first principles. This approach accurately reproduces
the available experimental results for alloy conductivity
and predicts the minimum level of alloying sufficient to
achieve the maximum reduction in conductivity in alloys.
Furthermore, a microscopic characterization of the relative
contribution of the different vibrational modes in terms
of their mean free paths provides practical guidelines for
nanostructuring to reduce the thermal conductivity below
the bulk alloy limit. Finally and most interestingly, mass

disorder is found to result in an increased anharmonic
scattering of phonons through a modification of their vi-
bration eigenmodes.
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